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Univariate time series in practice

• A data set whose elements are ordered with time is called a time series and in this case ’variable’ is used as
synonymous if no ambiguity arises.

• The univariate time series analysis is useful to check the properties of the time series in a set one at a time so that
relationships between them may be given their proper meaning.

• As an example we will examine the personal income in the United States from 1-st quarter 1954 to 4-th quarter
1994, values increase with a rate which is approximately constant.

2 / 31

Autocorrelation

• The possible existence of a correlation between the observations of a time series is a peculiar property that in
general other data sets don’t own.

• For example,many macroeconomic time series change slowly with time so that an observation at time t (the current
variable) tends tobe similar to that at time t− 1 (the lagged variable).

• This property is called ’autocorrelation’, it is much less evident in the growth rate time series.
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The linear correlation coefficient

• Let X and Y denote a pair of statistical variables for which n observations are available.

• Let r denote the linear correlation coefficient between x = (x1, x2, . . . , xn)
′ and y = (y1, y2, . . . , yn)

′.

• The defining formula is as follows:

r =

∑n

i=1
(yi − ȳ)(xi − x̄)

√

∑n

i=1
(yi − ȳ)2

√

∑n

i=1
(xi − x̄)2
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Properties of the linear correlation coefficient

• r is always included in the interval (−1, 1).

• If r > 0 then there is positive correlation between X and Y , while if r < 0 there is negative correlation and r = 0
means that X and Y are uncorrelated.

• r = 1 implies perfect positive correlation, while r = −1 perfect negative correlation.

• The correlation between X and Y is the same as the correlation between Y and X .

• The correlation of a statistical variable with itself is always equal to 1.

5 / 31
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Some comments on the linear correlation coefficient

• Correlation does not imply causation though causality often produces a non zero correlation coefficient.

• The value of r alone is inadequate to explain the relationships between two variables and knowledge about the
application field helps to appreciate the estimated value.

• r is a ’nonsense correlation’ between X and Y when the correlation is due to a third variable Z which is correlated
with both X and Y .

• The correlation between X and Y reflects the linear relationships only.

• While independent variables are uncorrelated, in general uncorrelated variables are not independent.
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The autocorrelation function for the personal income in the United States from 1954
to 1994 (quarterly data) 7 / 31

The autocorrelation function

• The estimated autocorrelation function is often used as a first approach to the analysis of a time series.

• If n observations of Xt are available, the estimated autocorrelation r̂(1) between Xt and Xt−1 i.e. the correlation
of a time series with its lagged version is the linear correlation coefficient between the two vectors
(x1, x2, . . . , xn−1)

′ and (x2, x3, . . . , xn)
′.

• Likewise r̂(h) is the ’order h’ autocorrelation between Xt and Xt−h, i.e. the linear correlation coefficient between
the two vectors (x1, x2, . . . , xn−h)

′ and (xh+1, xh+2, . . . , xn)
′.

• As a practical rule we may select a maximum value for h, hmax say, and take the data from t = h+ 1 on into
account.
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The personal income in the United States

• Let us consider the quarterly time series data of the personal income in the United States from 1954, first quarter, to
1994, fourth quarter (plot in Fig. 10).

• The original variable is million dollars but it is useful to transform the data by taking the their natural logarithm.

• The time series ∇xt represents the rate of growth of the original variable between times t− 1 and t (plot in Fig. 11).

• The personal income increases approximately by 1% per quarter but the variance of this growth rate varies
considerably with time.

• Table 1 reports for comparison the autocorrelation functions of Y and ∇Y

9 / 31
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The personal income in the United States

Figure 1: Natural logarithm of the personal income time series from first quarter 1954 to fourth quarter 1994
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Variation of the personal income in the United States

Figure 2: Variation of natural logarithm of the personal income time series from first quarter 1954 to fourth quarter 1994
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The autocorrelation function of Y and ∇Y

Table 1: Autocorrelation function at lags 1− 12 of the personal income Y and the variations in the level ∇Y = Yt − Yt−1

lag personal income variation in the level
τ r(τ) r(τ)

1 0.9997 −0.01
2 0.9993 0.0121
3 0.9990 0.1341
4 0.9986 0.0082
5 0.9983 −0.1562
6 0.9980 0.0611
7 0.9978 −0.035
8 0.9975 −0.0655
9 0.9974 0.0745
10 0.9972 0.1488
11 0.9969 0.033
12 0.9966 0.0363
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Some comments on the personal income autocorrelation resul ts

• Levels Y are highly autocorrelated up to three years (τ = 12) while ∇Y shows little or no autocorrelations.

• The personal income in past quarters is a good predictor of the current personal income level while the variations in
the levels are essentially useless for prediction.

• The persistence of high autocorrelations for large lags suggests that Y has ’long memory’ while the variations in the
levels don’t own such property.

• We may think of Y as a non stationary time series and of ∇Y as a stationary one.

• The two autocorrelation functions (see Fig. 14 and Fig. 15 as well) are typical of the two cases of stationarity and non
stationarity.
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Autocorrelation function of the personal income in the Unit ed States

Figure 3: Autocorrelation functions of Y for lags τ = 1, . . . , 12.
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Autocorrelation of the personal income increase in the Unit ed States

Figure 4: Autocorrelation functions of ∇Y for lags τ = 1, . . . , 12.
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The autoregressive model 16 / 31

Autoregressive model for univariate time series

• The autoregressive (AR) model may be viewed as a regression model where the input variables are the lagged
values of the response variable.

• The simplest AR model is the AR model of order 1, or AR(1), where the response variable is yt and the input
variable is yt−1:

yt = α+ φyt−1 + εt.
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The behavior of a AR( 1) depends on the coefficient φ

• Simulated time series from an AR(1) with φ = 0, φ = 1 and φ = 0.8, and fixed α, are very different each other:

◦ φ = 0, casual fluctuations similar to the ’level variations’ which is often observed for differenced time series
∇yt = yt − yt−1.

◦ φ = 1, a trend as in most ’level’ time series.

◦ φ = 0.8, a behavior which is half way between the previous two cases.

• We may distinguish however the case φ = 1, typical of non stationary time series, from the other cases (φ = 0 and
φ = 0.8) which characterize stationary time series.
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Stationarity of an AR( 1) time series

• A time series generated by an AR(1) is stationary if |φ| < 1

◦ is stationary if |φ| < 1,

◦ non stationary if |φ| = 1.

• The case |φ| > 1 in general is not to be considered as it implies the ’explosive’ behavior of the time series, this is of
little relevance in practical applications.

• Often non stationary is used to mean every situation where the stationarity hypothesis is untenable.
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A non stationarity case: the unit root

• If a time series is generated by an AR(1) with φ = 1 then it is said to have an ’unit root’.

• If yt has an unit root, then the autocorrelations are close to 1 and are slowly decreasing as the lag increases.

• If yt has an unit root, then yt is a ’long memory’ random process.

• If yt has an unit root a trend is present in the time series behavior and this is specially apparent when α is non zero.

• If yt has an unit root then ∇yt is a stationary random process and yt is called ’difference stationary’.
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A difference time series model

• Let yt be generated from an AR(1) model.

• Then ∇yt follows the model, where ρ = φ− 1,

∇yt = α+ ρyt−1 + εt.

• For this model it is possible to test the hypothesis ρ = 0 that the time series yt has an unit root.

• Notice that the stationarity condition −1 < φ < 1 is equivalent to −2 < ρ < 0.

• If ρ = 0, or, which it is the same, φ = 1, and, in addition, α = 0, then the AR(1) model is said to be a ’random walk’
yt = yt−1 + εt.
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Extension of the AR( 1) to the AR( p) model

• The AR(p) model is obtained by assuming as input variables beside yt−1 the lagged variables yt−2, . . . , yt−p.

yt = α+ φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + εt.

• The properties of the AR(p) model though similar are more general than those of the AR(1).

• An useful property consists in that the AR(p), p > 1, may be used for modeling not only a trend but the (pseudo)
periodic fluctuations of the time series as well.
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The unit roots in the AR( p) model

• The AR(p) model may be written in the equivalent form:

∇yt = α+ ρyt−1 + γ1∇yt−1 + . . .+ γp−1∇yt−p+1 + εt.

• The coefficients ρ, γ1, . . . , γp−1 may be calculated from φ1, . . . , φp.

• If ρ = 0 the time series yt has a unit root while it is stationary if −2 < ρ < 0.

• If ρ = 0 the time series yt is difference stationary, i.e. ∇yt follows an AR(p) model.
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Unit roots and the stochastic trend

• We could see that the time series data have to be ’differenced’ to obtain a stationary time series in the presence of a
unit root.

• This simple statement of fact is of importance in practice because time series may be jointly modeled only if they are
stationary.

◦ An important exception is the case of ’cointegration’, i.e. a linear combination of non stationary time series
exists which is found to be stationary.

• ...
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Unit roots and the stochastic trend (cont’d)

• Unit root time series contain a stochastic trend.

◦ To see this, consider for example an AR(1) with φ = 1 and assume that the time series is known at an initial
time t = 1 in the past.

◦ Then we may write recursively:

yt = yt−1 + εt,
yt−1 = yt−2 + εt−1 ⇒ yt = yt−2 + εt + εt−1,
yt−2 = yt−3 + εt−2 ⇒ yt = yt−3 + εt + εt−1 + εt−2,
...

yt = y1 +
∑t−2

i=0
εt−i.

• The summation
∑t−2

i=0
εt−i is said to be the stochastic trend.

25 / 31
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Deterministic trend

• The unit root AR models have a trend, but time series with trend exist that are not unit root AR.

• An example of a ’deterministic trend’ in an AR model is:

yt = α+ φyt−1 + δt+ εt.

• If in a deterministic trend model the random process is modeled by a stationary AR(1) (|φ| < 1), the time series is
said to be ’around trend stationary’.
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The AR(p) model with deterministic trend

• Often the following model proved useful in many applications:

∇yt = α+ ρyt−1 + γ1∇yt−1 + . . .+ γp−1∇yt−p+1 + δt+ εt.

• We have to check if a unit root is present: it suffices to test the hypothesis ρ = 0.

• In general yt−1,∇yt−2, . . . ,∇yt−p+1 result uncorrelated variables unlike yt−1, yt−2, . . . , yt−p.

• For time series with seasonal periodicities trend is a complicated polynomial function of time.
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The AR(p) model with deterministic trend and seasonal dummy variabl es

• If a time series includes a seasonal component with period s the dummy variables (or ’dummies’)
D1, D2, . . . , Ds−1 may be defined that equal 1 if there is an observation in this period while equal zero otherwise.

• The observations which are not accompanied by a dummy are intended to refer to the period s.

• All dummies and trend coefficients are to be included in the linear regression and may be estimated by the ordinary
least square (OLS) method.
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The AR(p) model with deterministic trend and seasonal dummy variabl es (cont’d)

• If the time series are quarterly data then s = 4 and we may write the model

∇yt = α+ ρyt−1 + γ1∇yt−1 + γ2∇yt−2 + γ3∇yt−3

+δ1D1t + δ2D2t + δ3D3t + δt+ εt.

• The usual test for checking if the coefficients are equal to zero apply to the coefficients of the dummies and of time.
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Exercises

• Simulate 100 observation from the model ∇yt = α+ ρyt−1 + δt+ εt where {εt} is a sequence of independent
identically distributed normal random variables with zero mean and variance σε = 7.85× 10−5, for the following
values of α, ρ, δ:

1. 0.0078,−0.95, 1.45× 10−5

2. 0.0087,−0.2155, 1.9× 10−5

3. 0.004,−0.1758, 0.0016× 10−5

4. 0.018,−0.78, 0.0097

• Perform the unit root test for each of the 4 time series.
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[FIGURES: Immagine1.eps, Immagine2.eps, Immagine31.eps, Immagine32.eps] [Data files and electronic sheets: * Example:
FIG95.xls, FIG96.xls, FIG97.xls, FIG98.xls * Personal income, time series: income.xls * Personal income, correlations: CORRE-
LATIONS.xls]
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