Tight Combinatorial Generalization Bounds for Threshold Conjunction Rules

Konstantin Vorontsov (voron@forecsys.ru) Andrey Ivahnenko (ivahnenko@forecsys.ru)

Computing Center RAS • Moscow Institute of Physics and Technology

4th International Conference on Pattern Recognition and Machine Intelligence (PReMI'11) Moscow, Russian Federation • June 27–July 1, 2011

Contents

1 Classification and Rule Induction

- Rule-Based Classification
- Rule Evaluation Metrics
- The overfitting of rules

2 Combinatorial Generalization Bounds

- The Probability of Overfitting
- Splitting and Connectivity Graph
- Splitting and Connectivity Generalization Bound

3 SC-bound for Threshold Conjunctive Rule

- Incorporating the SC-bound in Rule Evaluation Metric
- The Bottom-Up Traversal or the SC-graph
- Experiments on Real Data Sets

Rule-Based Classification Rule Evaluation Metrics The overfitting of rules

Classification problem

X — an *object space* $f_1(x), \ldots, f_n(x)$ — real-value features of an object $x \in X$

 $Y = \{1, \dots, M\} - a \text{ finite set of } class \text{ labels}$ $y \colon X \to Y - \text{ unknown } target \text{ function}$

$$X^{\ell} = \{(x_1, y_1), \dots, (x_{\ell}, y_{\ell})\} - training \ set, \ y_i = y(x_i), \ i = 1, \dots, \ell$$

Problem: given a set X^{ℓ} find a classifier $a: X \to Y$ such that

- a is well-interpretable (humans can understand it);
- a approximates a target y on the training set X^{ℓ} ;
- a approximates a target y everywhere on X (has a good generalization ability);

Conjunctive rules

Rule-Based Classification Rule Evaluation Metrics The overfitting of rules

Conjunctive rule is a simple well interpretable 2-class classifier:

$$r_{\mathcal{Y}}(x) = \bigwedge_{j \in J} [f_j(x) \leq_j \theta_j],$$

where $f_j(x)$ — features, $J \subseteq \{1, \ldots, n\}$ — subset of features, not very big, usually $|J| \lesssim 7$, θ_j — thresholds, \leq_j — one of the signs \leq or \geq , y — the class of the rule.

If $r_y(x) = 1$ then the rule *r* classifies *x* to the class *y*. All objects *x* such that $r_y(x) = 0$ are not classified by r_y .

One need a lot of rules to cover all objects and build a good classifier.

Rule-Based Classification Rule Evaluation Metrics The overfitting of rules

Decision List and Weighted Voting of conjunctive rules

Decision list (DL) is defined by a sequence of rules $r_1(x), \ldots, r_T(x)$ of respective classes $c_1, \ldots, c_T \in Y$:

- 1: for all t = 1, ..., T
- 2: if $r_t(x) = 1$ then return c_t
- 3: return c_0 (abstain from classification)

Weighted voting (WV) is defined by rule sets R_y of all classes $y \in Y$, with respective weights w_r for each rule r:

$$a(x) = \arg \max_{y \in Y} \sum_{r \in R_y} w_r r(x).$$

To learn DL or WV one learns rules one-by-one, gradually covering the entire training set X^{ℓ} (a lot of standard procedures!)

Rule-Based Classification Rule Evaluation Metrics The overfitting of rules

Rule evaluation metrics

The rule learning is a two-criteria optimization problem: 1) maximize the number of *positive examples* (of class *y*):

$$p(r_y, X^{\ell}) = \sum_{i=1}^{\ell} r_y(x_i) \big[y_i = y \big] \to \max_{r_y};$$

2) minimize the number of *negative examples* (not of class y):

$$n(r_y, X^{\ell}) = \sum_{i=1}^{\ell} r_y(x_i) [y_i \neq y] \rightarrow \min_{r_y};$$

Common practice is to combine them into one rule evaluation metric

$$H(p, n) \rightarrow \max_{r_y}$$

Rule-Based Classification Rule Evaluation Metrics The overfitting of rules

Examples of rule evaluation metrics

• Entropy criterion also called Information gain:

$$h\left(rac{P}{\ell}
ight) - rac{p+n}{\ell}h\left(rac{p}{p+n}
ight) - rac{\ell-p-n}{\ell}h\left(rac{P-p}{\ell-p-n}
ight) o \max$$
,
where $h(q) = -q\log_2 q - (1-q)\log_2(1-q)$;

• Gini Index — the same, but
$$h(q) = 2q(1-q)$$
;

• Fisher's exact test:

$$-\log C_P^p C_N^n / C_{P+N}^{p+n} \rightarrow \max;$$

- Boosting criterion [Cohen, Singer, 1999]: $\sqrt{p} \sqrt{n} \rightarrow \max$
- Meta-learning criteria [J. Fürnkranz at al., 2001–2007].

where

$$P = |\{x_i: y_i = y\}| - \text{number of positives in the set } X^{\ell};$$

$$N = |\{x_i: y_i \neq y\}| - \text{number of negatives in the set } X^{\ell}.$$

Rule-Based Classification Rule Evaluation Metrics The overfitting of rules

The problem: rules can suffer from overfitting

A common shortcoming of all rule evaluation metrics:

They ignore an overfitting resulting from thresholds θ_j learning.

On the independent testing set X^k $n(r, X^k)$ may be greater than expected; $p(r, X^k)$ may be less than expected.

Rule-Based Classification Rule Evaluation Metrics The overfitting of rules

The problem: rules are typically overfitted in real applications

Real task: predicting the result of atherosclerosis surgical treatment, L = 98.

The probability of overfitting

Let
$$\mathbb{X}^{L} = \{x_{1}, \dots, x_{L}\}$$
 be a finite set of objects.
Let R be a set of rules.
 $I(r, x_{i}) = [r(x_{i}) \neq [y_{i} = y]] - \text{binary loss function for a class } y.$
 $\mathbf{r} = (I(r, x_{1}), \dots, I(r, x_{L})) - \text{error vector of the rule } r.$
 $\nu(r, U) = \frac{1}{|U|} \sum_{x_{i} \in U} I(r, x_{i}) - \text{error rate of a rule } r \text{ on a sample } U$

Assumption. All partitions $\mathbb{X}^{L} = X^{\ell} \sqcup X^{k}$ into an observed training set X^{ℓ} and a hidden testing set X^{k} are equiprobable.

Definition. The *probability of overfitting* is the probability that the testing error is greater that the training error by ε or more:

$$Q_{\varepsilon}(X^{L}) = \mathsf{P}\big[\nu\big(r, X^{k}\big) - \nu\big(r, X^{\ell}\big) \geqslant \varepsilon\big],$$

The Probability of Overfitting Splitting and Connectivity Graph Splitting and Connectivity Generalization Bound

Exact bound for a fixed rule

Definition

Hypergeometric probability density function: PDF: $h_{L}^{\ell, m}(s) = P[\nu(r, X^{\ell}) = \frac{s}{\ell}] = \frac{C_{m}^{s} C_{L-m}^{\ell-s}}{C_{L}^{\ell}};$ Hypergeometric cumulative distribution function: CDF: $H_{L}^{\ell, m}(z) = P[\nu(r, X^{\ell}) \leq \frac{z}{\ell}] = \sum_{s=0}^{\lfloor z \rfloor} h_{L}^{\ell, m}(s).$

Theorem (Exact bound for a fixed rule)

For one-rule set
$$R = \{r\}$$
, $\nu(r, \mathbb{X}^L) = \frac{m}{L}$, and any $\varepsilon \in (0, 1)$

$$Q_{\varepsilon} = H_{L}^{\ell, m}(s_{m}(\varepsilon)), \quad s_{m}(\varepsilon) = \frac{\ell}{L}(m-\varepsilon k).$$

The Probability of Overfitting Splitting and Connectivity Graph Splitting and Connectivity Generalization Bound

Splitting and Connectivity graph

Define two binary relations on rules $a, b \in R$: partial order $a \leq b$: $I(a, x) \leq I(b, x)$ for all $x \in \mathbb{X}^{L}$; precedence $a \prec b$: $a \leq b$ and Hamming distance ||b - a|| = 1.

Definition (SC-graph)

Splitting and Connectivity (SC-) graph $\langle R, E \rangle$: R - a set of rules with distinct error vectors; $E = \{(a, b): a \prec b\}.$

Properties of the SC-graph:

- each edge (a, b) is labeled by an object $x_{ab} \in \mathbb{X}^{L}$ such that $0 = I(a, x_{ab}) < I(b, x_{ab}) = 1$;
- multipartite graph with layers $R_m = \{r \in R : \nu(r, \mathbb{X}^L) = \frac{m}{L}\}, m = 0, \dots, L + 1;$

The Probability of Overfitting Splitting and Connectivity Graph Splitting and Connectivity Generalization Bound

Connectivity and inferiority of a classifier

Def. Connectivity of a rule
$$r \in R$$

 $q(r) = \# \{ x_{ra} \in \mathbb{X}^L : r \prec a \};$

Def. Inferiority of a rule $r \in R$ $h(r) = \# \{ x_{ar} \in \mathbb{X}^L : a \leq r \}.$

Example:

$$q(r) = \#\{x3, x4\} = 2,$$

 $r(r) = \#\{x1, x2\} = 2.$

The Splitting and Connectivity (SC-) bound

Theorem (SC-bound)

For any \mathbb{X}^{L} , any R and any $\varepsilon \in (0, 1)$ $Q_{\varepsilon} \leq \sum_{r \in R} \left(\frac{C_{L-q-h}^{\ell-q}}{C_{L}^{\ell}} \right) H_{L-q-h}^{\ell-q, m-h}(s_{m}(\varepsilon)),$

where $m = L\nu(r, \mathbb{X}^L)$, q = q(r), h = h(r).

- If $q(r) \equiv h(r) \equiv 0$ then SC-bound transforms to Vapnik-Chervonenkis bound: $Q_{\varepsilon} \leq \sum_{r \in R} H_{L}^{\ell, m}(s_{m}(\varepsilon))$.
- The contribution of r ∈ R decreases exponentially by:
 q(r) ⇒ connected sets are less subjected to overfitting;
 h(r) ⇒ only lower layers contribute significantly to Q_ε.

Incorporating the SC-bound in Rule Evaluation Metric The Bottom-Up Traversal or the SC-graph Experiments on Real Data Sets

SC-modification of rule evaluation metric

Problem:

Estimate $n(r, X^k)$ and $p(r, X^k)$ to select rules more carefully.

Solution:

1. Calculate data-dependent SC-bounds:

$$\mathsf{P}\big[\frac{1}{k}n(r,\boldsymbol{X}^{k}) - \frac{1}{\ell}n(r,\boldsymbol{X}^{\ell}) \geqslant \varepsilon\big] \leqslant \eta_{n}(\varepsilon); \\ \mathsf{P}\big[\frac{1}{\ell}p(r,\boldsymbol{X}^{\ell}) - \frac{1}{k}p(r,\boldsymbol{X}^{k}) \geqslant \varepsilon\big] \leqslant \eta_{p}(\varepsilon);$$

2. Invert SC-bounds: with probability at least $1-\eta$

$$\frac{\ell}{k}n(r, \mathbf{X}^{k}) \leq n(r, \mathbf{X}^{\ell}) + \ell\varepsilon_{n}(\eta) \equiv \hat{n}(r, \mathbf{X}^{k});$$
$$\frac{\ell}{k}p(r, \mathbf{X}^{k}) \geq p(r, \mathbf{X}^{\ell}) - \ell\varepsilon_{p}(\eta) \equiv \hat{p}(r, \mathbf{X}^{k}).$$

3. Substitute \hat{p} , \hat{n} in evaluation metric: $H(\hat{p}, \hat{n}) \rightarrow \max_{r}$.

Incorporating the SC-bound in Rule Evaluation Metric The Bottom-Up Traversal or the SC-graph Experiments on Real Data Sets

Classes of equivalent rules: one point per rule

Example: separable 2-dimensional task, L = 10, two classes. rules: $r(x) = [f_1(x) \leq \theta_1 \text{ and } f_2(x) \leq \theta_2].$

Konstantin Vorontsov www.ccas.ru/voron Generalization Bounds for Conjunction Rules

Incorporating the SC-bound in Rule Evaluation Metric The Bottom-Up Traversal or the SC-graph Experiments on Real Data Sets

Classes of equivalent rules: one point per class

Example: the same classification task. One point per class. rules: $r(x) = [f_1(x) \leq \theta_1 \text{ and } f_2(x) \leq \theta_2].$

Konstantin Vorontsov www.ccas.ru/voron Generalization Bounds for Conjunction Rules

Incorporating the SC-bound in Rule Evaluation Metric The Bottom-Up Traversal or the SC-graph Experiments on Real Data Sets

Classes of equivalent rules: SC-graph

Example: SC-graph isomorphic to the graph at previous slide.

SC-bound calculation for the set of conjunction rules

Require: features subset J, class label $y \in Y$, set of objects \mathbb{X}^L . **Ensure:** Q_{ε} — SC-bound on probability of overfitting.

- 1: R_0 := the bottom rule of the SC-graph;
- 2: repeat

3: for all
$$r \in R_0$$

- 4: find all neighbor rules $r' \in R \setminus R_0$ for the rule r;
- 5: calculate q := q(r), h := h(r), $m := L\nu(r, \mathbb{X}^L)$;
- 6: calculate the contribution of the rule r: $Q_{\varepsilon}(r) := \frac{1}{C_{L}^{\ell}} C_{L-q-h}^{\ell-q} H_{L-q-h}^{\ell-q,m-h} \left(\frac{\ell}{L} (m-\varepsilon k) \right);$
- 7: add all neighbor rules r' in R_0 ;

8:
$$Q_{\varepsilon} := Q_{\varepsilon} + Q_{\varepsilon}(r);$$

9: **until** the contributions of layers $Q_{\varepsilon,m}$ become small.

Really, 5–10 lower layers of the SC-graph are sufficient.

Incorporating the SC-bound in Rule Evaluation Metric The Bottom-Up Traversal or the SC-graph Experiments on Real Data Sets

Experiment on real data sets

Data sets from UCI repository:

Task	Objects	Features
australian	690	14
echo cardiogram	74	10
heart disease	294	13
hepatitis	155	19
labor relations	40	16
liver	345	6

Learning algorithms:

- WV weighted voting (boosting);
- DL decision list;
- LR logistic regression.

Testing method: 10-fold cross validation.

Incorporating the SC-bound in Rule Evaluation Metric The Bottom-Up Traversal or the SC-graph Experiments on Real Data Sets

Experiment on real data sets. Results

	tasks						
Algorithm	austr	echo	heart	hepa	labor	liver	
RIPPER-opt	15.5	2.97	19.7	20.7	18.0	32.7	
RIPPER+opt	15.2	5.53	20.1	23.2	18.0	31.3	
C4.5(Tree)	14.2	5.51	20.8	18.8	14.7	37.7	
C4.5(Rules)	15.5	6.87	20.0	18.8	14.7	37.5	
C5.0	14.0	4.30	21.8	20.1	18.4	31.9	
SLIPPER	15.7	4.34	19.4	17.4	12.3	32.2	
LR	14.8	4.30	19.9	18.8	14.2	32.0	
WV	14.9	4.37	20.1	19.0	14.0	32.3	
DL	15.1	4.51	20.5	19.5	14.7	35.8	
WV+CS	14.1	3.2	19.3	18.1	13.4	30.2	
DL+CS	14.4	3.6	19.5	18.6	13.6	32.3	

Two top results are highlighted for each task.

Conclusions

- Splitting and connectivity properties of the set of classifiers together reduce overfitting significantly.
- The splitting property: only a small part of classifiers are suitable for a given task.
- The connectivity property: there a lot of similar classifiers in the set.
- SC-bound is a combinatorial generalization bound that takes into account both splitting and connectivity.
- SC-bound can be effectively calculated for the set of threshold conjunctive rules...
- \odot ...reducing the testing error by 1–2% on real data sets.

Questions, please

Incorporating the SC-bound in Rule Evaluation Metric The Bottom-Up Traversal or the SC-graph Experiments on Real Data Sets

Konstantin Vorontsov vokov@forecsys.ru http://www.ccas.ru/voron

www.MachineLearning.ru/wiki (in Russian):

- Участник:Vokov
- Слабая вероятностная аксиоматика
- Расслоение и сходство алгоритмов (виртуальный семинар)