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Probability of overfitting
Weak (permutational) probabilistic assumptions
OC-bound and VC-bound

Combinatorial framework for generalization bounds

Learning with binary loss

Xt ={xq,...,x } — a finite universe set of objects;
A=1{a1,...,ap} — a finite set of classifiers;

I(a, x) = [classifier a makes an error on object x] — binary loss;

Loss matrix of size Lx D, all columns are distinct:

a an as as as ae s ap
X1 1 1 0 0 O 1 1 | X —observable

0o 0o o o0 1 1 1 | (training) sample
Xe 0 0 1 0 0 0 0 of size £
xt11]0 0 0 1 1 1 0 | X —hidden

0o 0 o0 1 o0 O 1 | (testing) sample
XL 0 1 1 1 1 1 0 | odsizek=L—/

n(a) — number of errors of a classifier a on the set XL

(
n(a, X) — number of errors of a classifier a on a sample X ¢ X!;
v

a,X) = n(a, X)/|X| — error rate of a on a sample X C Xt;
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Example. The loss matrix for a set of linear classifiers

Combinatorial framework for generalization bounds

1 vector having no errors

°
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Example. The loss matrix for a set of linear classifiers

Combinatorial framework for generalization bounds

1 vector having no errors
5 vectors having 1 error

no errors 1 error
X1 0 1 0 0 0 O
X 0 0O 1 0 0 O
X3 0 0O 0 1 0 O
Xa 0 0o 0 0 1 o0
X5 0 0 0 0 0 1
X6 0 0O 0 0 0 O
X7 0 0O 0 0 O O
Xxg 0 0O 0 0 0 O
X9 0 0O 0 0 0 O
X10 0 0O 0 0 0 o
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Probability of overfitting
Weak (permutational) probabilistic assumptions
OC-bound and VC-bound

Combinatorial framework for generalization bounds

Example. The loss matrix for a set of linear classifiers

1 vector having no errors
5 vectors having 1 error
8 vectors having 2 errors

no errors 1 error 2 errors
X1 0 1 0 0 0 01 0 O O O 1 1 O
X 0 o 1 0o 0O O|1 1 0o O O O O O
X3 0 o 0 1 0 0ofO0O 1 1 0 0O 0 o0 1
Xa 0 o 0 o1 ofO0O O 1 1 0 O 0 O
X5 0 o 0 0o 0 1/0 O O 1 1 1 0 O
X6 0 o 0 0o 0 0O O O O 1 0 1 o0
X7 0 o 0 0 0 0O O O O O O O 1
Xg 0 o 0 0 0 0O O O O O O o0 O
X9 0 o 0 0 0 0O O O O O O o0 O
X10 0 o 0 o 0 0ofO O O O O O o0 O
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Combinatorial framework for generalization bounds

Probability of overfitting

Def. The learning algorithm y: X — a takes a training
sample X C X! and returns a classifier a = uX € A.

Def. Algorithm 1 overfits on a given partition X U X = Xt if
§(u, X) = v(pX, X) — v(pX, X) > €.

Def. Probability of overfitting

Q:(1, X") = P[o(u, X) > €].

Def. Exact bound: Q. = n(e).
Def. Upper bound: Q. < n(e).
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Combinatorial framework for generalization bounds

Weak (permutational) probabilistic assumptions

All partitions Xt = {x1,...,x,} = X U X are equiprobable, where
X — observable training sample of size ¥;

X — hidden testing sample of size k = L — {;

Probability is defined as a fraction of partitions:
1
L xx

XUX=x!
Interpretation: Only independence of observations is postulated.
Continuous measures, infinite sets, and limits | X| — oo are illegal.

Nevertheless, tight generalization bounds can be obtained!

Konstantin Vorontsov www.ccas.ru/voron Recent Advances on Generalization Bounds — Part Il



Probability of overfitting
Weak (permutational) probabilistic assumptions
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Combinatorial framework for generalization bounds

One-classifier bound (OC-bound)

Let A= {a}, m = n(a). Obviously, uX = a for all X c Xt.

Hypergeometric distribution function:
CaCi
¢
lz]
CDF: H;™(z) =P[n(a,X)<z] =Y h " (s).
s=0

PDF: h;™(s) = P[n(a,X)=5] =

-

Theorem (exact OC-bound)

For one-classifier set A= {a}, m = n(a), and any ¢ € (0,1)

Q: = Hf’m (Sm(€)), Sm(g) = %(miek)'

>
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Combinatorial framework for generalization bounds

Hypergeometric distribution, PDF hi’m (s)=C5Clzs /Ct

L—m

S h(s|m), m=50 s h(s|m), L=200, k=100
100 100

80 - 80 -

60 - 60

0 40

20 - 20

0 - 0 -

0 005 010 0 20 40 60 8 100 120 140 160 180 200

Distribution is concentrated along diagonal s = %m, thus allowing
to predict both n(a) = m and n(a, X) = ™ from n(a, X) = s.

Law of Large Numbers: v(a, X) — v(a) with ¢, k — ooc.
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Vapnik-Chervonenkis bound (VC-bound), 1971

For any Xt A, p, and € € (0,1)
Q- = P[V(/LX,)_() — Z/(MX,X) > 5] <
STEP 1: uniform bound makes the result independent on p:
<Q.= Pr;leaj([u(a,)_() —v(a,X) >e] <

STEP 2: union bound (wich is usually higly overestimated):
< PZ[V(a,)_() —V(a,X) > 5] =
acA
exact one-classifier bound:

= HP T (sm(e)), m=n(a).

acA
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Probability of overfitting
Weak (permutational) probabilistic assumptions
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Combinatorial framework for generalization bounds

OC-bound vs. VC-bound

The VC-bound [Vapnik and Chervonenkis, 1971] can be represented
as a sum of OC-bounds over all classifiers a € A:

Theorem (OC-bound)

Q. = H, " (sm(c)), m= n(a).

Theorem (VC-bound)

Q: < 65 < Z Hf’m (Sm(E))a m= n(a)'

acA

VC-bound is loose because of uniform bound and union bound,
which discards the splitting and similarity properties of A.
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Paradigms of COLT not using union bound

@ Uniform convergence bounds [Vapnik, Chervonenkis, 1968]
@ Theory of learnable (PAC-learning) [Valiant, 1982]

@ Data-dependent bounds [Haussler, 1992]

@ Concentration inequalities [Talagrand, 1995]

@ Connected function classes [Sill, 1995]

o Similar classifiers VC bounds [Bax, 1997]

@ Margin based bounds [Bartlett, 1998]

@ Self-bounding learning algorithms [Freund, 1998|

@ Rademacher complexity [Koltchinskii, 1998]

@ Adaptive microchoice bounds [Langford, Blum, 2001]
@ Algorithmic stability [Bousquet, Elisseeff, 2002]

@ Algorithmic luckiness [Herbrich, Williamson, 2002]

@ Shell bounds [Langford, 2002]

@ PAC-Bayes bounds [McAllester, 1999; Langford, 2005]
@ Splitting and connectivity bounds [Vorontsov, 2010]
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SC-graph, UC-bound and SC-bound
SC-bound is exact for some model sets of classifiers
Proof technique: generating and inhibiting subsets

Splitting and Connectivity (SC-) bounds

Splitting and Connectivity graph

Define two binary relations on classifiers:
partial order a < b: 1(a,x) < I(b, x) for all x € XF;
precedence a < b: a < b and Hamming distance ||b — a|| = 1.

Definition (SC-graph)

Splitting and Connectivity (SC-) graph (A, E):
A — a set of classitiers with distinct binary loss vectors;
E={(ab): a=< b}.

Properties of the SC-graph:
@ each edge (a, b) is labeled by an object x,, € X! such that
0=1(a,xap) < I(b,xap) = 1;
@ multipartite graph with layers
m—{aeAn —m} m=20,. L+1;
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SC-graph, UC-bound and SC-bound
SC-bound is exact for some model sets of classifiers
Proof technique: generating and inhibiting subsets

Example. Loss matrix and SC-graph for a set of linear classifiers

Splitting and Connectivity (SC-) bounds

layer O
x1
X
X3
X4
X5
X6
X7
X8
X9
X10

[elelolololololelele]
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SC-graph, UC-bound and SC-bound
SC-bound is exact for some model sets of classifiers

Splitting and Connectivity (SC-) bounds Proof technique: generating and inhibiting subsets

Example. Loss matrix and SC-graph for a set of linear classifiers

layer O layer 1
X1 0 1 0 0 0 O
X2 0 0 1 0 0 O
X3 0 0 0 1 0 O
X4 0 0 0 0 1 0
X5 0 0o 0 0 0 1
X6 0 0 0 0 0 O
X7 0 0 0 0 0 O
X3 0 0 0 0 0 O
Xg 0 0 0 0 0 O
X10 0 0O 0 0 0 O
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Splitting and Connectivity (SC-) bounds

Example. Loss matrix and SC-graph for a set of linear classifiers

s SN —IN >

2 2 B\ K> 7> layer 2
| \\ > layer 1

“ -2 0 2 4 6 8 10 2 Idycl 0

layer O layer 1 layer 2

X1 0 1 0 0 0 0|1 0 O O O 1 1 O

X2 0 o 1 0 0 0O0(1 1 0 O O O O O

X3 0 o o0 1 0 o0ofO0 1 1 O O 0 0 1

X4 0 o 0o o0 1 0|0 O 1 1 0 O 0 O

X5 0 o 0 0 0 10 O O 1 1 1 0 O

X6 0 o 0 0 0 0|0 O O O 1 0 1 O

X7 0 o 0 0 0 0|0 O O O O o0 o0 1

X8 0 o o0 o0 o0 0|0 O O O O O O O

X9 0 o 0 0o 0 0o0f0 O O O O O O0 O

X10 0 o 0 0 0 0|0 O O O O O o0 o
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SC-graph, UC-bound and SC-bound
Splitting and Connectivity (SC-) bounds SC-bound is exact for some model sets of classifiers
P € Yy Proof technique: generating and inhibiting subsets

Connectivity and inferiority of a classifier

Def. Connectivity of a classifier a € A
p(a) = #{xps € X': b < a} — low-connectivity.
q(a) = #{xap € X': 2 < b} — up-connectivity;
Def. Inferiority of a classifier a € A
r(a) = #{xs» € Xt c < b<a} € {p(a),...,n(a)}.

Example:
pla) =#{d,x2} =2, o A A AP

q(a) = #{x3,x4} =2, XTI x2 X5 x4 X3 x6 xl 8
Ha)=#{xi, 2y =2, m X X H

x3 X2 x1 x4
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SC-graph, UC-bound and SC-bound
SC-bound is exact for some model sets of classifiers

Splitting and Connectivity (SC-) bounds Proof technique: generating and inhibiting subsets

Uniform Connectivity (UC-) bound

Theorem (UC-bound)

For all X%, yu, A and e € (0,1)
- c 7 ,
Qz—: < Z % HL:ZLZHP (Sm('g))
acA L
where m = n(a), g = q(a), p= p(a).

© UC-bound improves the VC-bound, even if p(a) = g(a) = 0:
Q< X H " (sm(e)):

acA
© The contribution of a € A decreases exponentially by p(a)
= connected sets are less subjected to overfitting.

© UC-bound relies on connectivity, but disregards splitting.
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SC-graph, UC-bound and SC-bound
SC-bound is exact for some model sets of classifiers

Splitting and Connectivity (SC-) bounds Proof technique: generating and inhibiting subsets

Pessimistic Empirical Risk Minimization

Definition (ERM)

Learning algorithm p is Empirical Risk Minimization if

uX € A(X), A(X) = Argmin n(a, X);

acA

A choice of a classifier a from A(X) is ambiguous.
Pessimistic choice will result in modestly inflated upper bound.

Definition (pessimistic ERM)

Learning algorithm i is pessimistic ERM if

X = X);
1 argag\%n(a, )
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SC-graph, UC-bound and SC-bound
SC-bound is exact for some model sets of classifiers

Splitting and Connectivity (SC-) bounds Proof technique: generating and inhibiting subsets

The Splitting and Connectivity (SC-) bound

Theorem (SC-bound)

For pessimistic ERM p, any XL Aande e (0,1)

Cag
@<Z—7%fmﬁfwww
acA

where m = n(a), g = q(a), r = r(a).

O If g(a) = r(a) = 0 then SC-bound transforms to VC-bound:
Q- < X H ™ (sm(<)):
acA
© The contribution of a € A decreases exponentially by:
g(a) = connected sets are less subjected to overfitting;
r(a) = only lower layers contribute significantly to Q..
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SC-graph, UC-bound and SC-bound
SC-bound is exact for some model sets of classifiers

Splitting and Connectivity (SC-) bounds Proof technique: generating and inhibiting subsets

Experiment on model data: SC-bound vs. Monte Carlo estimate

Separable two-dimensional task, L = 100, two classes.

3 T T T T T T
SC-bound
MonteCarlo Q(eps)
> MonteCarlo uniform
5F 3
2l |
2
o 15F q
o
1 |
0.5 ]
0 . . n . .
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

eps
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Splitting and Connectivity (SC-) bounds

Experiment on model data: UC-bound vs. Monte Carlo estimate

Separable two-dimensional task, L = 100, two classes.

300 T T T T T T
SC-bound
UC-bound
2501 MonteCarlo Q(eps) ||
MonteCarlo uniform
200 q
2
& 1501 1
(o4
100 q
50 q
o . . . n .
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

eps
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Splitting and Connectivity (SC-) bounds Proof technique: generating and inhibiting subsets

Experiment on model data: SC-bounds vs. VC-bound

Two-dimensional task, L = 100, two classes.

Correct — 0% errors;

Noise20 — 20% errors;

Random — 50% errors;

Vapnik — data-independent VC-bound.

;
—v— Correct
1201 —6— Noise20 ||
1001 —x— Randpm ]
—=— Vapnik
80

60

40

20

—
0

0.05 0.1 0.15 0.2
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SC-graph, UC-bound and SC-bound
SC-bound is exact for some model sets of classifiers

Splitting and Connectivity (SC-) bounds Proof technique: generating and inhibiting subsets

Monotone chain of classifiers

Def. Monotone chain of classifiers: ag < a1 < -+ < ap.

Example: 1-dimensional threshold classifiers a;(x) = [x — 0];

2 classes {.70} X4 X5 X6 X1 X2 X3 X
6 objects - * M i i i
/ b 61 62 03
SC-graph: Loss matrix:
m=3 e @ ao & a as
x3
X1 0 1 1 1
m=2 @ X2 0 0 1 1
X2 X3 0 0 0 1
m=1 @ Xa 0 0 0 0
X1 X5 0 0 0 0
m=0 @ X6 0 0 0 0

Konstantin Vorontsov www.ccas.ru/voron Recent Advances on Generalization Bounds — Part Il



SC-graph, UC-bound and SC-bound
SC-bound is exact for some model sets of classifiers
Proof technique: generating and inhibiting subsets

Splitting and Connectivity (SC-) bounds

Two-dimensional monotone lattice of classifiers

Example: X5 X3 X1
. ° d .

2-dimensional linear classifiers, ago

2 classes {e, 0}, 401 ° o °

6 objects aio

402 ail a0

SC-graph: Loss matrix:

m=3 aoo do1 @10 Ao2 A1l a0 @03 A2 @21 a0
x{0 1 0 1 1 0 1 1 1 O

m=2 [0 0 1 0 1 1 0 1 1 1
x3(0 0 0 1 0 O 1 1 0 O

m=1 xx/0 0 0 0 0 1 0 0 1 1
x/0 0 0 0 0 0 1 0 O O

m=0 xx/0 0 0 0 0 0 O O 0 1
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Splitting and Connectivity (SC-) bounds Proof technique: generating and inhibiting subsets

SC-bound is exact(!) for multidimensional(!) lattices of classifiers

Denote d = (d4, ..., ds) an h-dimensional index vector, d; =0,1,...
Denote |d| = d; + ...+ dp.

Monotone h-dimensional lattice of classifiers of height D:

A:{ad d| <D c<déac<ad}

n(aq) = mo + |d|
Theorem (exact SC-bound)

If A is monotone h-dimensional lattice of height D, D > k, and

4 is pessimistic ERI\/I then for any € € (0,1)
Z h

C - h o—h,
Q- *ZChH 1 tHL h_TO (Smo+(€)) -

-

\
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Splitting and Connectivity (SC-) bounds Proof technique: generating and inhibiting subsets

Sets of classifiers with known SC-bound

Model sets of classifiers with known exact SC-bound:
@ monotone chains and multidimensional lattices;

unimodal chains and multidimensional lattices;

pencils of monotone chains;

layers and intervals of boolean cube;

hamming balls and their lower layers;

some sparse subsets of multidimensional lattices;

e © © ¢ ¢ ¢

some sparse subsets of hamming balls;

Real sets of classifiers with known tight SC-bound:
@ conjunction rules (see further);

o linear classifiers (under construction now).
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SC-graph, UC-bound and SC-bound
SC-bound is exact for some model sets of classifiers

Splitting and Connectivity (SC-) bounds Proof technique: generating and inhibiting subsets

Conclusions

)

Combinatorial framework can give tight and
sometimes exact generalization bounds.

OC (one-classifier) bound is exact.

UC (uniform connectivity) bound rely on connectivity
but neglect splitting.

SC (splitting and connectivity) bound is most tight and
even exact for monotone chains and lattices of classifiers.

SC-bound being applied to rule induction
reduces testing error of classifiers by 1-2%.

(]

Further: thee appendix slides about underlying combinatorial
technique for SC-bounds.
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SC-graph, UC-bound and SC-bound

s .. SC-bound is exact for some model sets of classifiers
Splitting and Connectivity (SC-) bounds Proof technique: generating and inhibiting subsets

Generating and inhibiting subsets of objects

For any a € A generating set X, C Xt and inhibiting set X! c Xt
exist such that if classifier a € A is a result of learning then

all objects X, lie in the training set and

all objects X! lie in the testing set:

[uX=a] < [% € X][X; < X].

X, X
—~ —
| ﬂ | |
X — training X — testing
XL
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SC-graph, UC-bound and SC-bound
SC-bound is exact for some model sets of classifiers

Splitting and Connectivity (SC-) bounds Proof technique: generating and inhibiting subsets

Bounds based on generating and inhibiting subsets

bability of obtaining each of classifiers)

If Conjecture is true then for any i, X, a € A
PluX=a] < P,=C[*/C[.
where Ly = L — | X,| — |X)|, £a=£—|X3].

Theorem (Probability of overfitting)

If Conjecture is true then for any XL, i, A and ¢ € (0, 1)
Q- <Y PH™ (sa(e)),

acA
where m, = n(a, X!) — n(a, X;) — n(a, X2),
sa(e) = %(n(a,XL) —ek) — n(a, Xa).

>
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SC-graph, UC-bound and SC-bound
SC-bound is exact for some model sets of classifiers

Splitting and Connectivity (SC-) bounds Proof technique: generating and inhibiting subsets

Correspondence between SC-graph and generating/inhibiting subsets

Upper connectivity of a classifier a € A
q(a) = Xy = {xab extia< b} — generating subset.

Inferiority of a classifier a € A
r(a) = |X}|, X, = {xw € X': c < b< a} — inhibiting subset.

N, N SN AN S

o N
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Splitting and Connectivity (SC-) bounds Proof technique: generating and inhibiting subsets

Questions?

Konstantin Vorontsov
vokov@forecsys.ru
http://www.ccas.ru/voron

www.MachineLearning.ru/wiki (in Russian):

@ VyacTtHuk:Vokov
@ Cnabas BepoATHOCTHAs aKCMOMAaTMKa

@ PaccioeHue n cxoaCTBO anroputMoB (BUPTYyasbHbIA CeMUHaPp)
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