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Statistical Analysis of Experiments in Data Mining and

-~ Computational Intelligence

In this talk

We focus on the use of statistical tests for
analyzing the results obtained in a design of
experiments within the fields of Data Mining and

Computational Intelligence.
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—Computational Intelligence —
Motivation

The experimental analysis on the
performance of a new method is a crucial
and necessary task to carry out in a research
on Data Mining, Computational Intelligence

Deciding when an algorithm is better than
other one may not be a trivial task.
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Motivation

Deciding when an
algorithm is better
than other one may
not be a trivial task.

Example for
classification

Large Variations in
Accuracies of Different
Classifiers

in Data Mining and

a\[e AlQ AlQ 2\ [o 4 AlQ Alg. © AlQ
aud 25.3 76.0 68.4 69.6 79.0 81.2 57.7
aus 55.5 81.9 85.4 77.5 85.2 83.3 85.7
bal 45.0 76.2 87.2 90.4 78.5 81.9 79.8
bpa 58.0 63.5 60.6 54.3 65.8 65.8 68.2
bps 51.6 83.2 82.8 78.6 80.1 79.0 83.3
bre 65.5 96.0 96.7 96.0 95.4 95.3 96.0
cmc 42.7 44.4 46.8 50.6 52.1 49.8 52.3
gls 34.6 66.3 66.4 47.6 65.8 69.0 72.6
h-c 54.5 77.4 83.2 83.6 73.6 77.9 79.9
hep 79.3 79.9 80.8 83.2 78.9 80.0 83.2
irs 33.3 95.3 95.3 94.7 95.3 95.3 94.7
Krk 52.2 89.4 94.9 87.0 98.3 98.4 98.6
lab 65.4 81.1 92.1 95.2 73.3 73.9 75.4
led 10.5 62.4 75.0 74.9 74.9 75.1 74.8
lym 55.0 83.3 83.6 85.6 77.0 71.5 79.0
mmg 56.0 63.0 65.3 64.7 64.8 61.9 63.4
imus 51.8 100.0 100.0 6.4 100.0 100.0 99.8
mux 49.9 78.6 99.8 61.9 99.9 100.0 100.0
pmi 65.1 70.3 73.9 75.4 73.1 72.6 76.0
prt 24.9 34.5 42.5 50.8 41.6 39.8 43.7
seg 14.3 97.4 96.1 80.1 97.2 96.8 96.1
sick 93.8 96.1 96.3 93.3 98.4 97.0 96.7
soyb 13.5 89.5 90.3 92.8 91.4 90.3 76.2
tao 49.8 96.1 96.0 80.8 95.1 93.6 88.4
thy 19.5 68.1 65.1 80.6 92.1 92.1 86.3
veh 25.1 69.4 69.7 46.2 73.6 72.6 72.2
vote 61.4 92.4 92.6 90.1 96.3 96.5 95.4
VOow 9.1 99.1 96.6 65.3 80.7 78.3 87.6
wne 39.8 95.6 96.8 97.8 94.6 92.9 96.3
Z0O0 41.7 94.6 92.5 95.4 91.6 92.5 92.6
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Motivation

Alg. 4 is the winner in 8
problems with average 78.0

Alg. 2 is the winner for 4
problems with average 80.0

What is the best between
both?

in Data Mining and
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in Data Mining and

A O A O A O A O /] A O A O O A O
[ ] [

M aud | 253 | 760 | 684 | 69.6 | 79.0 | 81.2 | 57.7
otivation aus | 555 | 819 | 854 | 775 | 852 | 833 | 857
bal 450 | 762 | 872 | 904 | 785 | 819 | 79.8
We must use bpa | 580 | 635 | 606 | 543 | 658 | 658 | 682
. bps | 516 | 832 | 828 | 786 | 801 | 790 | 833
statistical tests for ore | 655 | 960 | 967 | 960 | 954 | 953 | 960
. cmc | 427 | 444 | 4658 | 506 | 521 | 498 | 523
comparing the gls 346 | 663 | 664 | 476 | 658 | 69.0 | 72.6
_ h-c | 545 | 774 | 832 | 836 | 736 | 779 | 79.9
al gorit hms. hep | 793 | 79.9 | 808 | 832 | 785 | 80.0 | 83.2
irs 333 | 953 | 953 | 947 | 953 | 953 | 947
krk | 522 | 894 | 949 | 870 | 983 | 984 | 986
lab 654 | 811 | 921 | 952 | 733 | 739 | 754
led 105 | 624 | 750 | 749 | 749 | 751 | 748
Th b | . lym | 550 | 833 | 836 | 856 | 770 | 715 | 79.0
e propiem. mmg | 560 | 63.0 | 653 | 647 | 648 | 619 | 634
] mus | 51.8 | 100.0 | 100.0 | 96.4 | 100.0 | 100.0 | 99.8
mux | 499 | 786 | 99.8 | 619 | 99.9 | 100.0 | 100.0
How must | do the pmi | 651 | 703 | 739 | 754 | 731 | 726 | 76.0
. prt 249 | 345 | 425 | 50.8 | 41.6 | 398 | 437
statistical seg | 143 | 974 | 9.1 | 80.1 | 972 | 96.8 | 9.1
_ sick | 938 | 9.1 | 963 | 933 | 984 | 970 | 967
? soyb | 13.5 89.5 90.3 92.8 91.4 90.3 76.2
experi mental StUdy ' tao | 498 | 961 | 960 | 808 | 951 | 93.6 | 884
thy | 195 | 681 | 651 | 806 | 924 | 921 | 863
veh | 251 | 69.4 | 69.7 | 462 | 736 | 726 | 72.2
What tests must | vote | 614 | 924 | 926 | 901 | 963 | 965 | 954
vow | 9.1 991 | 966 | 653 | 807 | 783 | 876
use? wne | 398 | 956 | 9.8 | 97.8 | 946 | 929 | 963
700 | 417 | 946 | 925 | 954 | 916 | 925 | 926
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Objective

To show some results on the use of statistical tests
(nonparametric tests) for comparing algorithms in the

fields of Data Mining and Computational Intelligence.

We will not discuss the performance measures that can be
used neither the choice on the set of benchmarks.

Some guidelines on the use of appropriate nonparametrics
tests depending on the situation will be given
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Introduction to Inferential Statistics

Conditions for the safe use of parametric tests
Theoretical background

Checking the conditions in Data Mining Experiments

Checking the conditions in Parameter Optimization Experiments
Basic non-parametric tests and case studies:

For Pairwise Comparisons

For Multiple Comparisons involving control method

Data Mining: Neural Networks and Genetic Learning

Evolutionary Algorithms: CEC’05 Special Session on Parameter
Optimization
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-~ Computational Intelligence
OUTLINE (1)

Advanced non-parametric tests and case studies:
For Multiple Comparisons involving control method

Post-hoc Procedures
Adjusted p-values
Detecting all pairwise differences in a multiple comparison
Lessons Learned
Considerations on the use of nonparametric tests
Recommendations on the use of nonparametric tests
Frequent Questions
Books of Interest and References

Software
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Website http://sci2s.ugr.es/sicidm/
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Introduction to Inferential Statistics
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Introduction to Inferential Statistics

Inferential Statistics

provide measures of how well your data (results of
experiments) support your hypothesis and if your
data are generalizable beyond what was tested
(significance tests)

For example: Comparing two or various sets of
experiments in a computational problem.

Parametric versus Nonparametric Statistics — When
to use them and which is more powerful?

12



Introduction to Inferential Statistics

What is an hypothesis?

a prediction about a single population or about the
relationship between two or more populations.

Hypothesis testing is procedure in which sample
data are employed to evaluate a hypothesis.

The null hypothesis is a statement of no effect or no
difference and it is expected to be rejected by the

experimenter.
13



Introduction to Inferential Statistics

Examples of Null-Hypothesis

H,: The 2 samples come from populations with the same
distributions.

Or,
median of population 1 = median of population 2

(generalization with n samples)

Significance level a

 Jtis a confidence threshold that informs us whether or not to
reject the null hypothesis.

* It must be pre-defined by the experimenter and a significance
level of 90% (0.1) or 95% (0.05) is usually used, also 99% y
(0.01).



Introduction to Inferential Statistics

Significance level o

If you decide for a significance level of 0.05 (95%
certainty that there indeed is a significant
difference), then a p-value (datum provided by
the test) smaller than 0.05 indicates that you can
reject the null-hypothesis.

Remember: the null-hypothesis generally is
associated to an hypothesis of equality or
equivalence (equal means or distributions).

So, if a test obtains p = 0.07, it means that you
cannot reject the null hypothesis of equality =
there is no significant differences in the
analysis conducted 15



Introduction to Inferential Statistics

p-value

Instead of stipulating a priori level of significance
a, one could calculate the smallest level of
significance that results in the rejection of the null
hypothesis.

This is the p-value, it provides information
about “how significant” the result is.

It does It without commiting to a particular
level of significance.

16



Introduction to Inferential Statistics

There 1s at least one nonparametric test equivalent to a basic
parametric test

Parametric Nonparametric

« Compare two variables t-test Sign test

Wilcoxon signed
rank test

i ANOVA and | Friedman test
e Jf more than two variables derivatives

and more...
Tukey, Bonferroni-Dunn,
Tamhane, ... | Holm, etc...

17



Introduction to Inferential Statistics

Parametric Assumptions
(t-test, ANOVA, ...)

m The observations must be independent

m Normality: The observations must be drawn
from normally distributed populations

m Homoscedasticity: These populations must have
the same variances

18



Introduction to Inferential Statistics

Normality Tip

If a histogram representing your data looks like this,

you can conduct a parametric test!

19



Introduction to Inferential Statistics

Otherwise, don’t conduct a parametric test!

The conclusions could be erroneous
90 -

80 1
701
60
501
40 1]
301]
201]]
10

O

Histogram 20



Introduction to Inferential Statistics

Nonparametric Assumptions
(t-test, ANOVA, ...)

m The observations must be independent

m The data must be represented by ordinal
numbering.

How do nonparametric tests work?

Most nonparametric tests use ranks instead of raw data for
their hypothesis testing.

They apply a transformation procedure in order to obtain
ranking data. 21
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Conditions for the safe use of parametric tests
Theoretical background
Checking the conditions in Data Mining Experiments

Checking the conditions in Parameter Optimization Experiments

22
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Conditions for the safe use of parametric tests

Theoretical background

23



Conditions for the Safe Use of Parametric Tests

-~ Theoretical Background

The distinction between parametric and nonparametric test
is based on the level of measure represented by the data
which will be analyzed.

A parametric test is able to use data composed by real
values: But when we dispose of this type of data, we should not
always use a parametric test.

There are some assumptions for a safe usage of parametric tests ad
the non fulfillment of these conditions might cause a statistical
analysis to lose credibility.

24



Conditions for the Safe Use of Parametric Tests

-~ Theoretical Background

In order to use the parametric tests, is necessary to check
the following conditions:

Independence: In statistics, two events are independent when
the fact that one occurs does not modify the probability of the
other one occurring.

e When we compare two optimization algorithms they are usually
independent.

e When we compare two machine learning methods, it depends on
the partition:

e The independency is not truly verified in 10-fcv (a portion of
samples is used either for training and testing in different
partitions.

e Hold out partitions can be safely take as independent, since
training and test partitions do not overlap. 25



Conditions for the Safe Use of Parametric Tests

-~ Theoretical Background

Parametric tests assume that the data are taken from normal
distributions

Normality: An observation i1s normal when its behaviour
follows a normal or Gauss distribution with a certain value of
average p and variance o. A normality test applied over a sample

can indicate the presence or absence of this condition 1n observed
data.

 Kolmogorov-Smirnov
*  Shapiro-Wilk

« D’Agostino-Pearson
26



Conditions for the Safe Use of Parametric Tests

-~ Theoretical Background

Kolmogorov-Smirnov: It compares the accumulated distribution
of observed data with the accumulated Gaussian distribution
expected.

Shapiro-Wilk: It analyzes the observed data to compute the level
of symmetry and kurtosis (shape of the curve) in order to
compute the difference with respect to a Gaussian distribution
afterwards.

D’Agostino-Pearson: It computes the skewness and kurtosis to
quantify how far from the Gaussian distribution 1s in terms of
asymmetry and shape.

27



Conditions for the Safe Use of Parametric Tests

-~ Theoretical Background

Heteroscedasticity: This property indicates the existence of a
violation of the hypothesis of equality of variances.

Levene’s test 1s used for checking if k samples present or not
this homogeneity of variances (homoscedasticity).

28



Statistical Analysis of Experiments in Data Mining and

—Gemputaﬁfmal{iﬁe}ﬁgeﬂee—

Conditions for the safe use of parametric tests

Checking the conditions in Data Mining
Experiments

29



Conditions for the Safe Use of Parametric Tests

— Checking the Conditions in Data Mining Experiments—

FIRST CASE STUDY: Neural networks models:
MLP, RBEFN (3 versions), LQV
Hold-Out Validation (HOV), 10FCV and 5x2CV (5 runs each one)

Crata set # Inmstances # Artributes #t Classes
Breast G822 10 2
Cleveland 303 13 5

Crx GEO 15 2

Class 214 9 )

Ires 150 < 3

Fima TEE = 2

Wi ne 178 13 3

WL s Comsim =BO0 10 2

Bupa = . o =2

Lym phography 143 1= =
MNMonks 432 o 2
Page-blocks 5476 10 5
Pen-based 1055922 16 10
Eimgmo ror F =00 20 2
Satimagse 5435 FH F
Splice 3190 =0 3 30
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— Checking the Conditions in Data Mining Experiments—

TABLE 1. Kolmogorov-Smirnov test

Test of normality of Kolmogorov-Smirnov for HOV.

Breast Oeveland Crx Glass Iris Pima Wine Wisconsin
MLP (.00) Lo1) (.20) (.10) (.00) "(.00) (.00} (.00)
REFN (.00) (18) (.07) (.00) (.00) (.20) .01} (.00)
REFN Decremental (.00) (20) "(.00) (.20) (.00) [.16) (.00} (.00)
RBFN Inc. (.04) (20) (.20) (01) (.00) (03) (.20 (.00)
LVQ (.11 (20) (D4) [.00) (.04) (01) (.07) 1.00)
Test of normality of Kolmogorov-Smirnov for 10FCV.

Ereast Oeveland Crx Glass Iris Fima Wine Wisconsin
MLP (.20) (17) "(.00) 1.03) (.00) (01) (.00) .00)
RBFN (02) (.01) (20) (-20) (.00) (-20) (.00) (.00}
REFN Decremental (.20 (.20) "(.00) (.20) (.00) (.18) (L.00) (.00)
REFN Inc. (.10) (.20) [ 20) (.20) (.00) (.06 .03) (.00)
LvQ (-20) (.08} (-20) (-20) (20) (-20) (.00) (.00)
Test of Normality of Kolmogorov-Smirnov for 5 = 2CV.

Breast Cleveland Cmx Glass Irs Fima Wine Wisconsin
MLP (-18) (20} (-20) :{-'D*’cll (20) (-20) :{.MJ (.20)
REFN (.20) (.20) (.09) .00) (20) (.20 .00) (.01)
REFN Decremental (.00) (.05) (.00) [.00) (.00) (.20 (.00) (.01
REFN Inc. "(.01) (.20) (.20) (20) (01) (.20 (20) (.04)
LVQ (.20) (.04) (.05) (07) "(.03) (.05) 1.00) (.07)

a p-value smaller than 0.05 indicates that you can reject the null-hypothesis 31
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— Checking the Conditions in Data Mining Experiments—

TABLE 2. Comparison among validations
Test of Normality of D' Agostino-Pearson for HOV.

Breast Cleveland Crx Glass Iris Pima Wine Wisconsin
MLP (17) (.65) ( DE) (.14) (.00 (.35) .01) (12)
RBFN (00) (.18) (38) (02) (.00 (.59) 101 (.26)
RBFN Decremental (00) (.BR) (.00) (.10) (.00) (.43) (.40) (.00)
REFN Inc. (24) (.06) (50) (.09) (.09) (.10) (.04) (.08)
LVQ (31) (.58) (11) .00) (21) (00) (.05) (.00)

Test of Normality of D'Agostino=Pearson for 10FCV.

Breast Cleveland Crx Glass Iris Fima Wine Wisconsin
MLP (.21) (.70) (.00} (51) 1.03) (.0B) (03) 1.00)
REFN (.63) (.20) [.61) (60} (.00 (.27) (.00} (.03)
REFN Decremental (.0B) (.56) (.00} (63) (.15) (.10} (.00) 1.39)
REFN Inc. (.36) (.65) (.90) (11) (.38) (.04 (.53) (.07)
Vg (.78) (.00} (02) (1.00) (.1B) (.23) (.00) 1.00)

Test of Normality of D'Agostino-Pearson for 5 « 2CV.

Breast Cleveland Crx Glass Iris Pima Wine Wisconsin
MLP (92) (.60} 103 .53) (.11} [46) (.33) [.14)
REFMN (80) (.63) 122) 1.02) (.03) (DG) (.11) 1.02)
REFM Decremental (.00} (17 (.00) (.11) (.00} (B2) (D2) (.25)
REFM Inc. (.02) (.34) (.34) (.90) (.56) (.1B) (.90} (.66
LVQ (42) (.09) (.11) (.65) (.30} (.76) (D3] (.00}

a p-value smaller than 0.05 indicates that you can reject the null-hypothesis 32
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Histograms and Q-Q Grapics

Histogram Normal Q-Q Plot of crx
method REFN Dec. method REFN Dec.
50 25
40 . 20
E a]
3 5 15] .
C 301 =
T 10
g_ ]
o __ | o
o 20 g- 0.5
b3
L

-
[=]

o

(=

o
b

. - . ﬁ_ .
45.00 EUTDU 5500 80.00 8500 70.00 75.00 40 S50 EIU _F'IU BIU

Ccrx Observed Value

* A Q-Q graphic represents a confrontation between the quartiles from data
observed and those from the normal distributions. Absolute lack of normality. 33
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— Checking the Conditions in Data Mining Experiments—

Histograms and Q-Q Grapics

Histogram Normal Q-Q Plot of glass
method MLP method MLP
104 4
& T
2_
> :
5 6 2
¢ g 0
o
£ 4 s
& 2

(3% ]
L

T T T T T T T
30.00 40.00 50.00 60.00 J0.00 20 30 40 50 60 70 80
dlass Observed Value
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— Checking the Conditions in Data Mining Experiments—

TABLE 3. Test of HETEROSCEDASTICITY OF LEVENE
(BASED ON MEANS)

Breast Cleveland Cmx Glass Iris Pima Wine Wisconsin
HOV o0y (.00 100y ooy ooy ooy ooy  (o0)
10FCV  L00)  T(.00) (0oy ooy ooy (200 C(ooy (01
5«20V (00) L0 00y Looy (oo ooy  C(oo)  (o0)

Table 3 shows the results by applying Levene’s tests, where the symbol
“*” indicates that the variances of the distributions of the different
algorithms for a certain function are not homogeneities (we reject the

null hypothesis). 33
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— Checking the Conditions in Data Mining Experiments—

SECOND CASE STUDY: Genetics-Based Machine Learning

m We have chosen four Genetic Interval Rule
Based Algorithms:

m Pittsburgh Genetic Interval Rule Learning Algorithm.
m XCS Algorithm.

m GASSIST Algorithm.

m HIDER Algorithm.

s GBML will be analyzed by two performance
measures: Accuracy and Cohen’s kappa.

m How we state which is the best?
36
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— Checking the Conditions in Data Mining Experiments—

Experimental Study
m We have selected 14 data sets from UCI

repository.
Data set HEX. HAtts. #C.
bupa (bup) 345 6 2
cleveland (cle) 297 13 5
ecoli (eco) 336 7 8
glass (gla) 214 9 7
haberman (hab) 306 3 2
iris (iri) 150 4 3
monk-2 (mon) 432 6 2
new-Thyroid (new) 215 5 3
pima (pim) 768 8 2
vehicle (veh) 846 18 4
vowel (vow) 988 13 11
wine (win) 178 13 3
wisconsin (wis) 683 9 2
yeast (yea) 1484 8 10

37



Conditions for the Safe Use of Parametric Tests

— Checking the Conditions in Data Mining Experiments—

TABLE I. Normality condition in accuracy

Shapire-Wilk

bup rle BCO gla hab iri man new pim veh VoW win wis yea
Pitts-GIRLA | * (.02} [ * {.00) | *{.00) (.73 L O L O L o T I L O L I I L O R R L L)
XC5 (.25) | *(.03) (23] FLO0)p [ *0z) | * 00 *on | * o0y | *0d) (17] {.30] .00) | * .00 {d5)
GABSIET (.30] (.21) (.07) {.19] L0 | L00) (.07) | *(.00) (12] {.81) {.51] 00 | *i.00) (B3
HIDER (.11] (.42] (.22] FL00) | *oory | * (.00 (.06) | *o00) | *(00) {.25] {.15] .00) | * .00 {.23)

['Agostino-Pearaon

bup ele B gla hab iri maon nEw pim veh VoW win Wis Yea
Pitts-GIRLA (.13 (.10) | *(.00) {.G0) * (.00 (.11} *{.00) {.71) FLO0) | Y02y | 2 00) | *00p | Y00 | *(.00)
XC5 (.44) (.09) (.61] (.06 (.22) (.06 00 | *(.00) (.24] (.33] (.40) 000 | % (.03 (48]
GASSIET 1.55) (.75] {.59) (.42} {.79) {.19) (.89] (.29) {.25) {.65) (18] 03 *0d) {.05]
HIDER (.07) {.52) (.42] (.05 (.78 *{.00) {19y | *{00) | *(.00] (.43 (.37) 000 | % (.02 (18]

a value smaller than 0.05 indicates that you can reject the null-hypothesis
(i.e. the normality condition is not satisfied) and it is noted with “*”

38



Conditions for the Safe Use of Parametric Tests

— Checking the Conditions in Data Mining Experiments—
GBML Case of Study: some facts

m Conditions needed for the application of
parametric tests are not fulfilled in some cases.
m The size of the sample should be enough (50)

m One main factor: the nature of the problem

m Graphically, we can use Q-Q graphics and
histograms to see the normality

39



Conditions for the Safe Use of Parametric Tests

— Checking the Conditions in Data Mining Experiments—

Analyzing parametric tests

Histogram Plot of pl

mque
Expacted Normal
i T I

o000 sooo  toouee Tomace  eo.oooea

=
uuuuuuuuuuuu

Figure 1: Results of Pitts-GIRLA over pima data set in 10fcv: Histogram and Q-Q Grap-
.hiC. @-a Plot of glass

for algorithm= SIA

4

e
Expected N
3 1

-----------------

Figure 2: Results of SIA over glass data set in 10fcv: Histogram and Q-Q Graphic.
* A Q-Q graphic represents a confrontation between the quartiles from data

observed and those from the normal distributions. 40
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— Checking the Conditions in Data Mining Experiments—

TABLE 2. Test of HETEROSCEDASTICITY OF LEVENE
(BASED ON MEANS)

bup | cle | eo | gla | hab i | mon | new | pim vl vow | win Wis Jed
Accuracy (A3) [ H000) | (36) | (34) [ *QO0) | (A0} | *L00) | (26) | (A6) | *(00) | *(03) [ *(00) | *(00) | *(.00)
Cohen's kappa | (.51) | (.08) | (39) | (26) | *(04) | (40} | *(00) | (A0} [ *(00) | *(00) | *(03) | *00) | *00) | *00)

Table 2 shows the results by applying Levene’s tests, where the symbol
“*»” indicates that the variances of the distributions of the different
algorithms for a certain function are not homogeneities (we reject the

null hypothesis). 41



Conditions for the Safe Use of Parametric Tests

— Checking the Conditions in Data Mining Experiments—

NN and GBML do not verify parametric conditions.

Similar studies can be presented with them.

J. Luengo, S. Garcia, F. Herrera, A Study on the Use of Statistical Tests for
Experimentation with Neural Networks: Analysis of Parametric Test
Conditions and Non-Parametric Tests. Expert Systems with Applications 36
(2009) 7798-7808 doi:10.1016/j.eswa.2008.11.041.

S. Garcia, A. Fernandez, J. Luengo, F. Herrera, A Study of Statistical
Techniques and Performance Measures for Genetics-Based Machine
Learning: Accuracy and Interpretability. Soft Computing 13:10 (2009) 959-
977, doi:10.1007/s00500-008-0392-y.
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Conditions for the safe use of parametric tests

Checking the conditions in Parameter
Optimization Experiments
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Special Session on Real-Parameter Optimization at CEC-05,
Edinburgh, UK, 2-5 Sept. 2005

25 functions with real parameters, 10 variables:
f1-fS unimodal functions {6-f25 multimodal functions

P. N. Suganthan, N. Hansen, J. I. Liang, K. Deb, Y. P. Chen, A. Auger,
and S. Tiwari, “Problem definitions and evaluation criteria for the CEC
2005 special session on real parameter optimization.” Nanyang Techno-
logical University, Tech. Rep., 2005, available as http://www.ntu.edu.sg/
home/epnsugan/index _files/CEC-05/Tech-Report-May-30-035. pdf.

N. Hansen, “Compilation of Results on the CEC Benchmark Function
Set,” Institute of Computational Science, ETH Zurich, Switerland,

Tech. Rep.. 2005, available as http://www.ntu.edu.sg/home/epnsugan/
index_files/CEC-05/compareresults.pdf.

Source: S. Garcia, D. Molina, M. Lozano, F. Herrera, A Study on the Use of Non-
Parametric Tests for Analyzing the Evolutionary Algorithms' Behaviour: A Case
Study on the CEC'2005 Special Session on Real Parameter Optimization. Journal of
Heuristics 15 (2009) 617-644, doi: 10.1007/s10732-008-9080-4.
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[0 Algorithms involved in the comparison:

BLX-GL50 (Garcia-Martinez & Lozano, 2005 ): Hybrid Real-Coded Genetic
Algorithms with Female and Male Differentiation

BLX-MA (Molina et al., 2005): Adaptive Local Search Parameters for Real-Coded
Memetic Algorithms

CoEVO (Posik, 2005): Mutation Step Co-evolution

DE (Ronkkonen et al.,2005):Differential Evolution

DMS-L-PSO: Dynamic Multi-Swarm Particle Swarm Optimizer with Local Search
EDA (Yuan & Gallagher, 2005): Estimation of Distribution Algorithm

G-CMA-ES (Auger & Hansen, 2005): A restart Covariance Matrix Adaptation
Evolution Strategy with increasing population size

K-PCX (Sinha et al., 2005): A Population-based, Steady-State real-parameter
optimization algorithm with parent-centric recombination operator, a polynomial
mutation operator and a niched -selection operation.

L-CMA-ES (Auger & Hansen, 2005): A restart local search Covariance Matrix
Adaptation Evolution Strategy

L-SaDE (Qin & Suganthan, 2005): Self-adaptive Differential Evolution algorithm
with Local Search

SPC-PNX (Ballester et al.,2005): A steady-state real-parameter GA with PNX
crossover operator
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Table 1 Test of normality of Kolmogorov-Smirnov

fl 2 f3 f4 f5 f6 f7 f8 f9

BLX-GL50 (200 F(04) F(00) 14y  *(00) FL00) FLO04 (.20)  * (.00)
BLX-MA 0D *00)  *O0ly  F00)  *(.00) (.16) (.20)  *(.00) * (.00)

f10 f11 f12 f13 f14 f15 f16 f17 f18

BLX-GL50 (.10) (.20)  * (L.00) (.20) (200 *(00)  *(.00) (.20)  * (.00)
BLX-MA (L2200 F(00) F (00 (200 *(.02) *(00) (.20) (.20)  * (.00)

f19 20 f21 22 23 f24 25

BLX-GL50 * (.00) * .00y *(00) *(00) *(00) *(00) *(.00)
BLX-MA FLO0y  F00)  FLo0)  FO0)  F 00y FLO0)  F(02)
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Table 3 Test of normality of D’ Agostino-Pearson

fl f2 f3 f4 f5 f6 f7 f8 f9

BLX-GL50 (.10) (L06) * (.00) (.24)  *(.00) ¥ (.00) (.28) (.21)  * (.00)
BLX-MA 00y F(L00) ((22)  * 00y F OO0y F(LO0) (.19) (.12)  * (.00)

f10 f11 f12 f13 f14 f15 f16 f17 f18

BLX-GL50 (.17) (.19)  * (.00) (.79) (.47)  F 00y  *(00) (.07) *(.03)
BLX-MA (.80)  *(.00) *(.03) (.38) (.16)  * (.00) (.21) (.54) *(.04)

f19 20 f21 f22 f23 f24 f25

BLX-GL50 (.05) (.05) (L06)  F 01y FL00)  F 00 (.11)
BLX-MA ¥00)  F (.00 (.25) ¥ (.00)  *(.00) *(.00) (.20)
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Figure 1: Example of non-normal distribution: Function 20 and BLX-GL50
algorithm: Histogram and Q-0) Graphic.
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Figure 2: Example of normal distribution: Function f10 and BLX-MA algo-
rithm: Histogram and Q-C) Graphic.
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Table 4 Test of heteroscedasticity of Levene (based on means)

f1 2 £3 f4 f5 f6 7 8 9

LEVENE (.07) .07y  *(00) F04) FO0) *F00)  *F (00 (.41)  * (.00

f10 f11 12 f13 f14 f15 f16 f17 f18

LEVENE (.99) * (.00) (.08) (.18) (.87  *F (00 F (00 (.24) (.21)

f19 20 21 22 23 24 25

LEVENE * (.01) *00) * (.00 (.47) (.28)  *(.00) * (.00
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Basic non-parametric tests and case studies:
For Pairwise Comparisons
For Multiple Comparisons involving control method
Data Mining: Neural Networks and Genetic Learning

Evolutionary Algorithms: CEC’05 Special Session on Parameter
Optimization
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— Computational Intelligence

Basic Non-Parametric Tests and Case Studies

For Pairwise Comparisons
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Basic Non-Parametric Tests and Case Studies

— ForPairwise Comparisons

Pairwise Comparisons involve Two-Sample Tests

When comparing means of two samples to make inferences about
differences between two populations, there are 4 main tests that could

be used: /\

Unpaired data }?/aired data \
Parametric test Independent-Samples /|Paired-Samples
T-Test T-Test

Non-parametric test |[Mann-W hitney U test |Wilcoxon
(or Wilcoxon rank- Signed-Ranks
sum test) test

}Also, Sign test)/
\/
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Basic Non-Parametric Tests and Case Studies

— ForPairwise Comparisons
Count of Wins, Losses and Ties: The Sign Test

It a classic form of inferential statistics that use the binomial
distribution. If two algorithms compared are, assumed under the null-
hypothesis, equivalent, each should win approximately N/2 out of N
datasets/problems.

The number of wins are distributed following a binomial distribution.
The critical number of wins are presented in the following Table for

0=0.05 and a=0.1:

#datasets 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
wops o 6 7 7 8 9 9 10 10 11 12 12 13 13 14 15 15 16 17 18 18
Wpip o 6 6 7 7 8 9 9 1010 11 12 12 13 13 14 14 15 16 16 17
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Basic Non-Parametric Tests and Case Studies

— ForPairwise Comparisons
The Sign Test

For a greater number of datasets/problems, the number of wins 1s
under the null-hypothesis distributed according to N(N /2, /N /2).

Thus, if an algorithm obtains a number of wins which is at least

N/2 +1.96-/N /2 the algorithm 1s significantly better with a=0.05.
Tieds are split between the two algorithms. If they are an odd number,
one 1s ignored.
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Basic Non-Parametric Tests and Case Studies

— ForPairwise Comparisons

Example of the Sign Test

dataset C45 C45m Sign
Adult 0.763 0.768 + Classification problem with 14 datasets.
Breast 0.599  0.591 - C4.5 standard vs C4.5 with m parameter
Wisconsin 0.954 0.971 - (minimum number of examples for creating
Cme 0628 0661 n a leaf) tuned for AUC measure.
[onosphere 0.882 0.888 +
fris 0936 0931 ) Number of wins of C4.5m = 10
Bupa 0.661 0.668 +
Lung 0.583  0.583 _ Number of loses of C4.5m =2
Lymphography 0.775 0.838 + Number of ties =2
Mushroom 1.000 1.000 =
Tumor 0.940 0.962 +
Rheum 0619 0.666 v Moreover, one tie 1s added in the wins
Voting 0.972 098] N count. No. of wins = 11.

' ' 55
Wine 0.957 0.978 +



Basic Non-Parametric Tests and Case Studies

— ForPairwise Comparisons

Example of Sign Test

According to the previous Table, this difference is significant with o =
0.05.

ffdatasets 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
wops 9 6 7 7 8 9 9 10 10/11\12 12 13 13 14 15 15 16 17 18 18
wpio o 6 6 7 7 8 9 9 10(10/11 12 12 13 13 14 14 15 16 16 17

S

This test does not assume any commensurability of scores or differences nor does it
assume normal distributions and is thus applicable to any data. On the other hand, it
is much weaker than the Wilcoxon signed-ranks test because 1t will not reject the
null-hypothesis unless one algorithm almost always outperforms the other.
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Basic Non-Parametric Tests and Case Studies

— ForPairwise Comparisons

Wilcoxon Signed-Ranks Test for Paired Samples

The Wilcoxon Signed-Ranks test 1s used in exactly the same situations
as the paired t-Test (1.e., where data from two samples are paired).

In general, the Test asks:

H,: The 2 samples come from populations with the same
distributions. Or, median of population 1 = median of
population 2

The test statistic 1s based on ranks of the differences
between pairs of data.

NOTE: If you have < 5 pairs of data points, the Wilcoxon Signed-
Ranks test can never report a 2-tailed p-value < 0.05 >



Basic Non-Parametric Tests and Case Studies

— ForPairwise Comparisons

Procedure for the Wilcoxon Signed-Ranks Test

1. For each pair of data, calculate the difference. Keep track of the
sign (+ve or —ve).

2. Temporarily 1gnoring the sign of the difference, rank the absolute
values of the difference. When the differences have the same value,
assign them the mean of the ranks involved in the tie.

3. Consider the sign of the differences again and ADD up the ranks
of all the positive differences and all the negative differences

(R*, R"). Ranks of difference equal to 0 are split evenly among the
sums; 1f there 1s an odd number of them, one 1s 1gnored.
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Basic Non-Parametric Tests and Case Studies

— ForPairwise Comparisons

Procedure for the Wilcoxon Signed-Ranks Test

4. Let T be the smaller of the sums of positive and negative
differences. T=Min {R", R*}.

Use an appropriate Statistical Table or computer to determine the
test statistic, critical region or P-values.

5. Reject the H 1f test statistic < critical value, or if P < a (alpha).

6. Report Test results.
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Basic Non-Parametric Tests and Case Studies

— ForPairwise Comparisons

Example of the Wilcoxon Signed-Ranks Test

dataset C4.5 C4.5m Difference Rank

Adult 0.763  0.768 +0.005 35

Breast 0.599 0.591 -0.008

Wisconsin 0.954 0.971 +0.017 9 R"=35+9+12+5+ 6+ 14+
Cme 0.628  0.661 +0.033 12 11+13+8+10+1.5=93
Ionosphere 0.882  0.888 +0.006 S

Iris 0.936 0.931 -0.005 @

Bupa 0.661 0.668 +0.007 6

Lung 0.583  0.583 0.000 1.5

Lymphograph 0.775  0.838 +0.063 14 R=7+35+15=12
Mushroom 1.000 1.000 0.000 @

Tumor 0.940 0.962 +0.022 11

Rheum 0.619  0.666 +0.047 13

Voting 0.972  0.981 +0.009 8

60
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Basic Non-Parametric Tests and Case Studies

— ForPairwise Comparisons
Example of the Wilcoxon Signed-Ranks Test

LEVEL OF SIGNIFICANCE FOR ONE-TAILED TEST
n 0.025 0.01 0.005
R—|— — 35 + 9 + 12 + 5 + LEVEL OF SIGNIFICANCE FOR TWO-TAILED TEST
0.05 0.02 0.01
6 0 — —
6+ 14+ 11 +13 + : : : -
8 4 2 0
9 6 3 2
8+ 10+ 1.5=93 10 : 5 ;
11 11 7 5
12 14 10 7
— —_ ;o= 4 < 13 1 13 10
R=7+35+15=12  ——= . e
15 55 30 16
16 30 24 20
17 35 28 23
. 18 40 33 28
T — Mln {R+ . R } — 12 19 46 a8 32
20 52 43 38
21 59 49 43
22 66 56 49
23 73 62 55
a=0.05,N=14 dif =21 5 . eg :
25 89 77 65 61




Basic Non-Parametric Tests and Case Studies

— ForPairwise Comparisons
Example of the Wilcoxon Signed-Ranks Test

LEVEL OF SIGNIFICANCE FOR ONE-TAILED TEST
n 0.025 0.01 0.005
LEVEL OF SIGNIFICANCE FOR TWO-TAILED TEST
L] 0.05 0.02 0.01
Critical value for T for - . - -
N up to 25. ’ ; ° -
g8 4 2 ]
=] 5] 3 2
10 g = 2
11 11 7 5
o 12 14 10 7
[t T <= dif (table-value) 1 10
o 14 21 16 1=2
then Reject the H, s s 20 16
16 20 24 20
17 325 28 22
18 40 33 28
19 46 38 32
20 52 43 2B
21 59 49 4z
22 {=]=] 56 49
23 73 o2 55
24 81 59 Gl
25 89 r =1+ 62




Basic Non-Parametric Tests and Case Studies

— ForPairwise Comparisons

For n < 30: use T values (and refer to a Table B.12. Critical Values
of the Wilcoxon T Distribution, Zar, App 101)

For n > 30: use z-scores (z 1s distributed approximately normally).

(and refer to the z-Table, Table B.2. Zar — Proportions of the
Normal Curve (One-tailed), App 17)

_nn+1)
i 4
L — e
/n(n + 1)(2n + 1)
Where, \ 24

with a = 0.05, the null-hypothesis can be rejected if z is smaller

than —1.96.
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Basic Non-Parametric Tests and Case Studies

—— ForPairwise Comparisons

The Wilcoxon signed ranks test is more sensible than the t-
test. It assumes commensurability of differences, but only
qualitatively: greater differences still count more, which is
probably desired, but the absolute magnitudes are ignored.

From the statistical point of view, the test is safer since it does

not assume normal distributions. Also, the outliers
(exceptionally good/bad performances on a few data-

e e il N i

sets/problems) have less effect on the Wilcoxon than on the t-
test.

The Wilcoxon test assumes continuous differences, therefore
they should not be rounded to one or two decimals, since this
would decrease the power of the test due to a high number (gI
ties.



Basic Non-Parametric Tests and Case Studies

— ForPairwise Comparisons

Wilcoxon Signed-Ranks Test in SPSS

Analyze -2>Nonparametric Tests > 2 Related Samples Tests

* Select pair(s) of variables

e Select Wilcoxon
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Basic Non-Parametric Tests and Case Studies

— ForPairwise Comparisons

Wilcoxon Signed-Ranks Test in SPSS

Ranks
OUTPUT N Mean Rank | Sum of Ranks
beta-endorphin Negative Ranks 0° .00 00
conc. after (pmol/l) -  Positive Ranks 11b 6.00 56,00
beta-endorphin Ties o
conc. before (pmoll/l) Total »

a. beta-endorphin conc. after (pmol/l) < beta-endorphin conc. before (pmol/l)
b. beta-endorphin conc. after (pmol/l) > beta-endorphin conc. before (pmol/l)

C. heta-endnrnhin eone hefare (nmal/lY = heta-endnrnhin cnne  after (nrnol/l)

Test Statistics P

(pmolll) -
beta-endorphi
n conc. before
(pmol/l)
Z -2.9342

Asymp. Sig. (2-tailed) .003

a. Based on negative ranks.

b.  Wilcoxon Signed Ranks Test
Conclude: Reject HO (Wilcoxon Signed-Ranks test, Z =-2.934, p = 0.003, n =11, 0). ¢6



Statistical Analysis of Experiments in Data Mining and

— Computational Intelligence

Basic Non-Parametric Tests and Case Studies

For Multiple Comparisons involving a Control
Method

67
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Using Wilcoxon test for comparing multiple
pairs of algorithms:

Wilcoxon'’s test performs individual comparisons between two
algorithms (pairwise comparisons). The p-value in a pairwise
comparison is independent from another one. If we try to
extract a conclusion involving more than one pairwise
comparison in a Wilcoxon’s analysis, we will obtain an
accumulated error coming from the combination of pairwise
comparisons. In statistical terms, we are losing the control on
the Family Wise Error Rate (FWER), defined as the probability
of making one or more false discoveries among all the
hypotheses when performing multiple pairwise tests.
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Advanced Non-Parametric Tests and Case

—

When a p-value 1s considered in a multiple comparison, it reflects the
probability error of a certain comparison, but it does not take into account the
remaining comparisons belonging to the family.

If one is comparing k algorithms and in each comparison the

level of significance is a, then in a single comparison the
probability of not making a Type | error is (1 — a), then

the probability of not making a Type | error in the k-1
comparison is (1- a)-(k-1). Then the probability of making one or
more Type | erroris 1 - (1- a):(k-1).

For instance, if a = 0.05 and k = 10, this is 0.37, which is
rather high.
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Using Wilcoxon test for comparing multiple
pairs of algorithms:

The true statistical signification for the pairwise
comparison test is given by:

p = P(Reject Hy|Hy true) =
=1— P(Accept Ho|Hp true) =
=1 — P(Accept A, = A;,i=1,....k—1|Hy true) =
=1- Hi:ll P(Accept _Ap = A;|Hp true) =
=1 - [[''[1 = P(Reject A = A;|Ho true)] =
=1-TL2 (1 —pu,)
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Using Multiple Comparison Procedures:

Making pairwise comparisons allows us to conduct this analysis,
but the experiment wise error can not be previously controlled.
Furthermore, a pairwise comparison is not influenced by any
external factor, whereas in a multiple comparison, the set of
algorithms chosen can determine the results of the analysis.

Multiple comparison procedures are designed for allowing us to
fix the FWER before performing the analysis and for taking into
account all the influences that can exist within the set of results
for each algorithm.
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Multiple Comparison Procedures:

Parametric Nonparametric

ANOVA Friedman's test
Iman-Davenport’s test

Bonferroni-Dunn’s test
Holm’s method

Hochberg’s method

Turkey, Dunnet, ...
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Basic Non-Parametric Tests and Case Studies

Friedman’s test: It is a non-parametric equivalent of the test of repeated-
measures ANOVA. It computes the ranking of the observed results for algorithm
(r; for the algorithm j with k algorithms) for each function/algorithm, assigning to
the best of them the ranking 1, and to the worst the ranking k.

Under the null hypothesis, formed from supposing that the results of the
algorithms are equivalent and, therefore, their rankings are also similar, the
Friedman statistic

12N | K(k+1)>
7 > R; - <D
)

T k(k+1) 4

is distributed according to con K - 1 degrees of freedom, being , R, = LZ r)
and N the number of functions/algorithms. (N > 10, k > 5) N~

(Table B.1. Critical Values of the Chi-Square Distribution, App. 12, Zar). 3



Basic Non-Parametric Tests and Case Studies

Iman and Davenport’s test: It is a metric derived from the Friedman’s
statistic given that this last metric produces a conservative undesirably
effect. The statistic is:

- __(N-Dy
F 2
N(k—1)— 72

and it is distributed according to a F distribution with kK — 1 and (k - 1)(N - 1)
degrees of freedom.

(Table B.4. Critical values of the F Distribution, App. 21, Zar).
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Basic Non-Parametric Tests and Case Studies

\ = \

Example Of the dataset C4.5 C4.5m C4.5¢f C4.5¢f,m
. Adult 0.763 0.768 0.771 0.798
Friedman Test Breast 0599  0.591 0590  0.569
Wisconsin 0.954 0.971 0.968 0.967
Cmc 0.628 0.661 0.654 0.657
. Ionosphere 0.882 0.888 0.886 0.898
The results obtained ,

(performances) are arranged by Ir1s 0.936 0.931 0.916 0.931
a matrix of data with data sets  °UP? 0.661 0.668  0.609 0.685
in the rows and algorithms in Lung 0.583  0.583 0.563 0.625

the columns. Lymphography  0.775 0.838 0.866 0.875
Mushroom 1.000 1.000 1.000 1.000

Tumor 0.940 0.962 0.965 0.962

C4.5 with cf parameter is the ~ Rheum 0.619  0.666 0614  0.669
version which optimizes AUC ;0 0972 0981 0975 0975
considering various levels of Wine 0.957 0.978 0.946 0.970

confidence for pruning a leaf. i




Basic Non-Parametric Tests and Case Studies

Example of the
Friedman Test

Rankings are assigned in
increasing order from the best
to the worst algorithm for each

dataset/problem.

Ties in performance are
computed by averaged
rankings.

The most interesting datum for
now is the Average Rank for
each algorithm.

dataset C4.5 C4.5m C4.5¢f C4.5¢f,m
Adult 4 3 2 1
Breast 1 2 3 4
Wisconsin 4 1 2 3
Cmc 4 1 3 2
Ionosphere 4 2 3 1
Iris 1 2.5 4 2.5
Bupa 3 2 4 1
Lung 2.5 2.5 4 1
Lymphography 4 3 2 1
Mushroom 2.5 2.5 2.5 2.5
Tumor 4 2.5 1 2.5
Rheum 3 2 4 1
Voting 4 1 2 3
Wine 3 1 4 2
Average Rank  3.143 2.000 2.893 1.9647¢




Basic Non-Parametric Tests and Case Studies

C4.5 C4.5m C4.5¢f C4.5¢f,m
Average Rank  3.143 2.000 2.893 1.964

Friedman’s measure

. 12N |, kk+1)?

AF k(k+1)_z R

=1215“* 0.878+4.000+8.369 +3.857 — 2> | =
—9.28

Observing the critical value, it can be concluded that it rejects the null hypothesis
77
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C4.5 C4.5m C4.5¢f C4.5¢f,m
Average Rank  3.143 2.000 2.893 1.964

Iman and Davenport’s measure

(N =1) 2 139.28
= = =3.69
N(k—1)— 7>  133-9.28

F.=3.69, F(3,3x13) = 2.85

Observing the critical value, it can be concluded that it rejects the null hypothesis
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Basic Non-Parametric Tests and Case Studies

If the null hypothesis is rejected by Friedman or Iman-Davenport test,
we can proceed with a post-hoc test:

The most frequent case is when we want to compare one algorithm (the
proposal) with a set of algorithm. This type of comparison involves a
CONTROL method, and it is usually denoted as a 1 x n comparison.

The simplest procedure in 1 x n comparisons is the Bonferroni-Dunn
test. It adjusts the global level of significance by dividing it by (k — 1) in
all cases, being k the number og algorithms.
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Basic Non-Parametric Tests and Case Studies

The performance of two algorithms is significantly different if the
corresponding average ranks differ by at least the critical difference:

K(k+1
CD:Q“\/ (BN j

If the CD is greater than the values presented in the following Table, we
can conclude that both algorithms have differences in performance:
t#classifiers 2 3 4 5 6 7 8 9 10

goos 1.960 2.241 2394 2498 2576 2638 2.690 2.724 2773
go.qo 1.645 1.960 2.128 2.241 2326 2394 2.450 2.498 2.539

(b) Critical values for the two-tailed Bonferroni-Dunn test; the number of classifiers include the control
classifier.
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Basic Non-Parametric Tests and Case Studies

Considering the example of the four versions of C4.5, we have (C4.5cf,m

as control):
C4.5 C4.5m C4.5¢f C4.5¢f,m

Average Rank  3.143 2.000 2.893 1.964

CD ... =2394 *> _116
‘ 614
CD ., =2.128 *° —1.038
' 614

With 0=0.05, C4.5cf,m performs better than C4.5.
With 0=0.1, C4.5cf,m also performs better than C4.5.
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Basic Non-Parametric Tests and Case Studies

However, a more general way to obtain the differences among
algorithms is to obtain a statistic that follow a normal distribution. The
test statistics for comparing the i-th algorithm with the j-th algorithm is

computed by:
k(k+1

The z value is used to find the corresponding probability from the table of
normal distribution, which is then compared with an appropriate a.

In Bonferroni-Dunn, o is always divided by (k - 1) independently of the
comparison, following a very conservative behavior. For this reason other
procedures such as Holm’s or Hochberg’s are preferred.

82



Basic Non-Parametric Tests and Case Studies

Holm’s method: We dispose of a test that sequentially checks the hypothesis
ordered according to their significance. We will denote the p values ordered: p, < p,
<ot S P -

Holm’s method compares each p; with o/(k-1) starting from the most significant p
value. If p, Is below than a/(k-1), the corresponding hypothesis is rejected and it
leaves us to compare p, with o/(k-2). If the second hypothesis is rejected, we
continue with the process. As soon as a certain hypothesis can not be rejected, all
the remaining hypothesis are maintained as accepted.

The value of z 1s used for finding the corresponding probability from the table of the
nomal distribution, which is compared with the corresponding value of o .
(Table B.2. Zar — Proportions of the Normal Curve (One-tailed), App 17)
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Holm’s method: SE = /(4.5/6.14) = 0.488. =R / [ke+ 1)
= Iy — I\ .
p-values are ! 6N

0.607 (C4.5+cf)
0.019 (C4.5+m)

0.016 (C4.5+m-+cf).
i  classifier z=(Ro—R;)/SE p o/

1 C4.5+m+cf (3.143—-1.964)/0.488 =2.416 0.016 0.017

2 C4.5+m (3.143 —2.000)/0.488 =2.342  0.019 0.025

3 C4.5+ct (3.143—2.893)/0.488 = 0.512  0.607 0.050
The first one is rejected (0.016 <0.017)

The second one is rejected (0.019 < 0.025),
The third one can not be rejected (0.607 > 0.05)
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Hochberg’s method: It 1s a step-up procedure that works in the opposite direction
to Holm’s method, comparing the largest p value with o, the next largest with o/2
and so forth until it encounters a hypothesis it can reject. All hypotheses with
smaller p values are then rejected as well.

Hochberg’s method is more powerful than Holm’s although it may under some
circumstances exceed the family-wise error.
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— Computational Intelligence

Basic Non-Parametric Tests and Case Studies

Data Mining: Neural Networks and Genetic
Learning
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Wilcoxon Signed-Ranks Test for Paired Samples

Wilcoxon's test applied over the all possible comparisons
between the algorithms in accuracy

Table 11 Wilcoxon test applied over the all possible comparisons
between the five algonthms in classification rate

Comparison Classification rate We Stress In

R R p value bOId the
Pitts-GIRLA-XCS 05 1045 0001 winner algorithm
Pitts-GIRLA-GASSIST-ADI 0 105 0.001 in each row
Pitis-GIRLA-HIDER 1 104 0.001 h
Pitts-GIRLA-CN2 6 99 0.004 when
XCS-GASSIST-ADI 89 16 0.022
XCS-HIDER 53 52 0.975 the p'Value
XCS-CN2 78 27 0.109 associlated iIs
GASSIST-ADI-HIDER 2 83 0.041
GASSIST-ADI-CN2 52 53 0.975 below 0.05
HIDER-CN2 100 5 0.003 87
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Wilcoxon Signed-Ranks Test for Paired Samples

Wilcoxon's test applied over the all possible comparisons

between the algorithms in kappa rate

Table 12 Wilcoxon test applied over the all possible comparisons
between the five algonthms in kappa

Comparison Cohen’s kappa We Stress in
R R p value bold the
Pitts- GIRLA-XCS 0.5 1045  0.001 winner algorithm
Pitts-GIRLA-GASSIST-ADI 0 105 0.001 in each row
Pitts-GIRLA-HIDER 0 105 0.001 h
Pitts-GIRLA-CN2 10 95 0.008 when
XCS-GASSIST-ADI 74 31 0.177
XCS-HIDER 51 54 0.925 the p'Value
XCS-CN2 78 27 0.109 associlated iIs
GASSIST-ADI-HIDER 28 77 0.124
GASSIST-ADI-CN2 60 45 0.638 below 0.05

HIDER-CN?2 96 9 0.006 88
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Results of applying Friedman’s and Iman-Davenport’s test with level of
significance a < 0.05 to the GBMLs

Table 13 Results of the Friedman and Iman-Davenport tests (x = (0.03)

Friedman Value Value in };3 p value Iman—Davenport Value Value in Fg p value
Classification rate 28957 9487 <0.0001 13.920 255 =<0.0001
Cohen’s kappa 26.729 9487 =0.0001 11.571 255 =0.0001

m The statistics of Friedman and Iman-Davenport are clearly
greater than their associated critical values

m There are significant differences among the observed
results

m Next step: apply post-hoc test and find what algorithms

partners' average results are dissimilar <0
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-~ Computational Intelligence

Basic Non-Parametric Tests and Case Studies

Evolutionary Algorithms: CEC’03 Special Session
of Parameter Optimization
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vOIU ary U . VAW

TABLE XVI
WILCcOXON TEST FOR ALL FUNCTIONS (F1-F23)

alg. RT R~ Hyp. @« Hyp.a« Hyp. @« Hyp. «
0.01 0.02 0.05 0.1
BLX-GL50  289.5 355 R R R R
BLX-MA 2955 295 R R R R
COEVO 301.0 240 R R R R
DE 262.5 625 R R R R
DMS-L-PSO  199.0 126.0 A A A A
EDA 2845 405 R R R R
K-PCX 269.0  56.0 R R R R
L-CMA-ES  273.0 520 R R R R
L-SADE 209.0 116.0 A A A A
SPC-PNX 305.5 19.5 R R R R

G-CMAES versus the remaining algorithms.
The critical values are: 68, 76, 89 and 100 (0.01, 0.02, 0.05, 0.1) 93
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G-CMA-ES vs. RT

R~ p-value
BLX-GL50 289.5 35.5 0.001
BLX-MA 205.5 295 0.001
CoEVO 301.0 24.0 0.000
DE 262.5 62.5 0.009
DMS-L-PSO 199.0 126.0 0.357
EDA 284.5 40.5 0.001
K-PCX 269.0 56.0 0.004
L-CMA-ES 273.0 52.0 0.003
L-SaDE 209.0 116.0 0.259
SPC-PNX 305.5 19.5 0.000

G-CMAES versus the remaining algorithms.
P-value obtained through normal approximation
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A-- - ) ..- aVa - aVl'a aaVatda'

Example on the use of Wilcoxon’s test combined for
multiple comparisons

p = P(Reject Hy|Hy true) =
=1 — P(Accept HD|HD true) =
=1 — P(Accept 4;1——’1 i=1,....k—1|Hy true) =
=1 — ]_FT P(Accept _Ay. = 4 i|Ho true) =
— 1 — H [1 — P(Reject A = A;|Hy true)] =

o —
=1-T1,2, (1 - pu,)

0 =1-(1-0.001)(1-0.001)(1—0.000)(1—0.009)(1—0.357)

(1= 0.001)(1—0.004)(1 - 0.003)(1— 0.259)(1 — 0.000) = 0.467
95
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Table 7 Results of the Friedman and Iman-Davenport tests (o = 0.03)

Friedman Value p-value Iman-Davenport Value p-value
value in 2 value in Fr
f15-125 26.942 18.307 0.0027 3.244 1.930 0.0011
All 41.985 18.307 =0.0001 4.844 1.875 =0.0001
Algorithm Ranking (f15-£25) Ranking (f1-25)
BLX-GL50 5.227 53
BLX-MA 7.681 7.14
CoEVO 9.000 6.44
DE 4.955 5.66
DMS-L-PSO 5.409 5.02
EDA 6.318 6.74
G-CMA-ES 3.045 3.34
K-PCX 7.545 6.8
L-CMA-ES 6.545 6.22
L-SaDE 4.956 4.92 96

SPC-PNX 5.318 6.42
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Control Algorithm: G-CMA-ES

Fig. 6 Bonferroni-Dunn’s graphic corresponding to the results for f15-£25
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HoLM/HOCHEERG ITAB LE FOR FUMNCTIONS F1-F25 (G-CMA-ES 18 THE

CONTROL ALGORITHM )

»

i algorithm z D o )i ox
/ .05 0.10 \
10 COEVO 543662 | 543013 -10—% 000500  0.01000
9 BLX-MA 405081 | 5.10899 - 10—5  0.00556  0.01111
A K-PCX 368837 | 2.25603 1079 000625 0.01250
7 EDA 362441 | 2.80610-10—4 000714 0.01429
i SPC-PNX 3.28329 000103 0.00833  0.01667
5 L-CMA-ES  3.07009 000214 0.01000  0.02000
. DE 247313 001339 Q01250 EII:]E‘.[I]/
3 BLX-GL50 205947 0.03667 0.01667 003333
2 DMS-L-PSO  1.79089 0.07331 0.02500  0.05000
1 L-SADE 165429 0.09213 0.05000 0. 10000
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HoLM/HOCHEERG ITAB LE FOR FUMNCTIONS F1-F25 (G-CMA-ES 18 THE

CONTROL ALGORITHM )

=

i algorithm z / e o /i ﬂ_flij
0,105 0.110

110 COEVO 543662 | 543013 -10—%  0.00500  0.01000
9 BLX-MA 405081 | 5.10390.10—5 000556  0.01111
o K-PCX 3.68837 | 2.25603 -10~% 000625  0.01250
T EDA 362441 | 2.80619-10-4 000714 0.01429
& SPC-PNX 3.28329 00103 000833 0.01667
3 L-CMA-ES  3.07009 000214 0.01000  0.02000
4 DE 247313 001339 0.01250  0.02500
3 BLX-GL50 208947 003667 0.01667 003333
2 DMS-L-PSO  1.79089 007331 0.02500  0.05000

1 L-SADE 1.68429 WEH 0.05000 0, 10000
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Statistical Analysis of Experiments in Data Mining and

-~ Computational Intelligence
OUTLINE (1)

Advanced non-parametric tests and case studies:

For Multiple Comparisons involving control method

Post-hoc Procedures
Adjusted p-values
Detecting all pairwise differences in a multiple comparison
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— Computational Intelligence

Advanced non-parametric tests and case studies

For Multiple Comparisons involving a control
method
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General Case Study used:

24 data sets from UCI and KEEL data-set

Classifiers (from KEEL, standard parameters values):
PDFC
NNEP
IS-CHC + 1NN
FH-GBML

3 runs of 10fcv 104
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Multiple
Comparison non-
parametric
procedures map.

In white are depicted the
basic non-parametric test,
whereas 1n grey are
depicted more advanced
tests which will be
presented next.

Contrast Estimation based on Medians

Friedman Test

Friedman
Aligned-Ranks
Test

Quade Test

N
Multiple
Comparison
Test

A 4

I N

.

Multiple Sign Test
Bonferroni-Dunn Procedure
Single step
Li Procedure
Holm Procedure )
Holland Procedure > Step-down
Finner Procedure )
Hochberg Procedure h
Hommel Procedure > Step-up
Rom Procedure )
“ W,
v
Post-hoc
procedures for

comparinga
control method 105
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Contrast Estimation based on Medians

Multiple Sign Test

[ Bonferroni-Dunn Procedure
Li Procedure
Holm Procedure
Friedman
: Holland Procedure
Aligned-Ranks :;)
Test ) Finner Procedure
Hochberg Procedure
Quade Test
| Hommel Procedure
\ Rom Procedure
. v “ v,
R4 ~
Multiple Post-hoc
Comparison procedures for
Test comparing a

control method

A N

Single step

> Step-down

> Step-up
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Friedman
And

Iman-
Davenport

(only showed for

comparison purposes
in this case study)

Dataset | pppC NNEP  ISCHC+INN FH-GBML
adult | 0,752 (4) 0,773 (3) 0,785 (2] 0,795 (1)
breast | 0,727 (2) 0,748 (1) 0,724 (3) 0,713 (4)
bupa | 0,736 (1) 0,716 (2) 0,585 (4) 0,638 (3)

car | 0,094 (1) 0,861 (3) 0,880 (2) 0,791 (4)
cleveland | 0,508 (4) 0,553 (2) 0,575 (1) 0,515 (3)
contraceptive | 0,535 (2) 0,536 (1) 0,513 (3) 0,471 (4)
dermatology | 0967 (1) 0.871 (3) 0,954 (2) 0,532 (4)
ecoli | 0831 (1) 0,807 (3) 0,819 (2) 0,768 (4)
perman | 0,745 (1) 0,702 (4) 0,719 (2) 0,705 (3)
glass | 0,709 (1) 0572 (4) 0,669 (2) 0,607 (3)
haberman | 0,722 (4) 0,728 (2) 0,725 (3) 0,732 (1)
iris | 0967 (1) 0,947 (4) 0,053 (3) 0,960 (2)
lymphography | 0,832 (1) 0,752 (3) 0,802 (2) 0,691 (4)
mushrooms | 0,998 (1) 0,992 (2) 0,482 (4) 0,910 (3)
newthyroid | 0,963 (1,5) 0,963 (1,5) 0,954 (3) 0,926 (4)
penbased | 0082 (1) 0,953 (2) 0,932 (3) 0,630 (4)
ring | 0,978 (1) 0,773 (4) 0,834 (3) 0,849 (2)
satimage | 0,854 (1) 0,787 (3) 0,841 (2) 0,779 (4)
shuttle | 0,965 (3) 0,984 (2) 0,995 (1) 0,947 (4)
spambase | 0924 (1) 0,887 (2) 0,861 (3) 0,804 (4)
thyroid | 0,020 (3) 0,942 (1) 0,931 (2) 0,921 (4)
vehicle | 0837 (1) 0,643 (2) 0,602 (3) 0,554 (4)
wine | 0972 (1) 0956 (2) 0,944 (3) 0,922 (4)
wisconsin | 0958 (4) 0,959 (3) 0.964 (1,5) 0,964 (1,5)
77l 3470 2470 3971

Average ranking

07
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Iman-Davenport’s test:

Fr=6.691, p-value for
F(3,3*23) = 0.000497,

Zr = 12N [Z k(k +1)° } Therefore the null hypothesis
J

Friedman’s measure: 16.255

k(k+1) is rejected.
_ (N=Dz;
T ONK=D— g7
2
(Friedman) y?% = ]i ‘ 24 {(1.?712 +2.479% +2.479% +3.271%) - 4 45 ~16.225
23-16.225
(Iman—Davenport) Fg = 4 3 16225 6.691
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Contrast Estimation based on Medians

Multiple Sign Test

Friedman Test Bonferroni-Dunn Procedure
Single step
] Li Procedure
Holm Procedure A
B Holland Procedure > Step-down
Aligned-Ranks :;)
Test ) Finner Procedure )
Hochberg Procedure A
Quade Test
- Hommel Procedure > Step-up
Rom Procedure
\. J
. J N J
N4 "
Multiple Post-hoc
Comparison procedures for
Test comparing a

control method 109



Advanced Non-Parametric Tests and Case Studies

Multiple sign test: The following procedure, allows us to compare all of the
other algorithms with a control labeled algorithm. The technique, an extension of
the familiar sign test, carries out the following steps:

1. Represent by x;; and x;; the performances of the control and the jth classifier
in the 1th data set.

2. Compute the signed differences d; = x;; x;. In other words, pair each
performance with the control and, in each data set, subtract the control

performance from the jth classifier.

3. Let 1; equal the number of differences, d;, that have the less frequently
occurring sign (either positive or negative) within a pairing of an algorithm
with the control.

110



Advanced Non-Parametric Tests and Case Studies

4. Let M, be the median response of a sample of results of the control method
and M; be the median response of a sample of results of the jth algorithm.
Apply one of the following decision rules:

* For testing Hy: M; = M, against H, : M; <M,, reject H, if the number of
plus signs is less than or equal to the critical value of R; appearing in
Table A.1 in Appendix A (Ref. below) for k - 1 (number of algorithms
excluding control), n and the chosen experimentwise error rate.

* For testing Hy: M; <M, against H, : M; Z M, reject Hy, if the number of
minus signs is less than or equal to the critical value of R; appearing in
Table A.1 in Appendix A for k - 1, n and the chosen experimentwise
error rate.

Source: S. Garcia, A. Fernandez, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple
comparisons in the design of experiments in computational intelligence and data mining:
Experimental Analysis of Power. Information Sciences 180 (2010) 2044-2064.
doi:10.1016/}.ins.2009.12.010. 111




Advanced Non-Parametric Tests and Case Studies

Multiple Sign
Test

PDFC NNEP ISSCHC+1INN FH-GBML
Dataset | | copran . 3 1
adult 0,752 0,773 (+) 0,785 (+) 0,795 (+)
breast 0,727 0,748 (+) 0,724 (-) 0,713 (-)
bupa 0,736 0,716 (-) 0,585 (-) 0,638 (-)
CAT ||:|-‘!'_|-':__:]-‘l DH‘E-I - 0, 580 I:-:I DT!}I ['::'
cleveland 0,508 0,553 (-) 0,575 (+) 0,515 (4)
contraceptive 0,535 0,536 (+) 0,513 (-) 0,471 (-)
dermatolomy 0,967 0.871 (-) 0,954 (-) 0,532 (-)
ecoll 0,831 0,807 (-) 0,819 (-) 0,768 (-)
Ferman 0,745 0,702 (-) 0,719 (-) 0,705 (-)
glass 0,709 0,572 (-) 0,669 (-) 0,607 (-)
haberman 0,722 0,728 (+) 0,725 (4) 0,732 (4)
iris 0,967 0,947 (-) 0,953 (-) 0,960 (-)
lymphography 0,832 0,752 (-} 0,802 (-) 0,691 (-)
mushrooms 0,998 0,992 (-) 0,482 (-) 0,910 (-)
new thyroid 0,063 0,963 (=) 0,954 (=) 0,926 (-)
penbased 0,982 0,953 (-) 0,932 (-) 0,630 (-)
ring 0,078 T3 (-) 0,834 (=) 0,849 (-)
satimage 0,854 LJI8T [-) 0,841 (-) 0,779 (-)
shuttle 0,965 0,984 (+) 0,995 (+) 0,947 (-)
spambase 0,924 0,887 (-) 0,861 (-) 0,804 (-)
thyroid 0,929 0,942 (+) 0,931 (+) 0,921 (-)
vehicle 0,837 0,643 (-) 0,602 (=) 0,554 (-)
wine 0,972 0,956 (-) 0,944 (=) 0,922 (-)
wisconsin 0,958 0,959 (+) 0,964 (+) 0,964 (+)
N . 16 18 20
umber of minus
Number of plus 7 G 4
T B 4

Y
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Contrast Estimation based on Medians

Multiple Sign Test

. 4 .
Friedman Test Bonferroni-Dunn Procedure
Li Procedure
Holm Procedure
Friedman
: Holland Procedure
Aligned-Ranks
Test Finner Procedure
Hochberg Procedure
Hommel Procedure
\ Rom Procedure
. v “ v,
R4 ~
Multiple Post-hoc
Comparison procedures for
Test comparing a

control method

A N

Single step

> Step-down

> Step-up
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Aligned Ranks Friedman’s test: a value of location is computed as the average
performance achieved by all algorithms in each data set. Then, it calculates the
difference between the performance obtained by an algorithm and the value of
location. This step i1s repeated for algorithms and data sets. The resulting
differences, called aligned observations, which keep their identities with respect
to the data set and the combination of algorithms to which they belong, are then
ranked from 1 to kn relative to each other. Then, the ranking scheme 1s the same
as that employed by a multiple comparison procedure which employs
independent samples; such as the Kruskal-Wallis test. The ranks assigned to the
aligned observations are called aligned ranks.

(k—1)|38 R2 — (kn®/4)(kn + 1)°

T — —
{[kn(kn + 1)(2kn +1)]/6} — (1/k)>_1, R?
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Friedman

Aligned
Ranks

Dataset

PDFC NINEP [S-CHC-1INN  FH-GBML

adult | -0,024 (74) 0,003 (56) 0,009 (38) 0,019 (30)

bresst | -0.001 (51) 0,020 (29)  -0,004 (59)  -0,015 (68)

bupa | 0,068 (11) 0,047 (16)  -0.084 (90)  -0,031 (81)

car | 0112(7) -0020(72) -0002(53) -0,001 (92)
cleveland | -0,030 (80) 0,016 (32) 0,037 (19) -0,023 (73)
contraceptive | 0,022 (28) 0,022 (26) -0,001 {50) -0,043 (85)
dermatology | 0,136 (4) 0040 (17) 0,123 (5)  -0,209 (95)
ecoli | 0,025 (24) 0,001 (48) 0,013 (33) -0,038 (34)

german | 0,027 (22) -0,016 (63) 0,001 (47) -0,013 (&7)

glass | 0,069 (10} -0,068 (88) 0,030 (21) -0,032 (82)
haberman | -0,005 (61) 0,002 (46)  -0,002 (54) 0,005 (41)
iris | 0,010 (38)  -0,010 (66)  -D,003 (58) 0,003 (42)
lymphography | 0,063 (13)  -0,017 (71) 0,032 (20) -0,078 (39)
mushrooms | 0,152 (2) 0,146 (3) -0,363 (96) 0,065 (12)
newthyroid | 0,012 (34,5) 0,012 (345) 0,002 (45)  -0,026 (76)
penbased | 0,108 (8) 0078 (9) 0058 (14)  -0,244 (94)
ring 0,120 (6) -0,085 (91) -0,025 (75) -0,010 {65)
satimage | 0,038 (18) -0,028 (79) 0,026 (23) -0,036 (83)
shuttle | -0,008 (62) 0,012 (36) 0,022 (27) -0,026 (77)
spambasze | 0,055 (15) 0,018 (31) -0,008 (63) -0,065 (87)
thyroid | -0,001 (52) 0,011 (37) 0,000 {49) -0,010 {64)
vehicle 0,178 (1) -0,016 (70) -0,057 (86 -0,105 (93

wine | 0,024 (25) 0,007 (40) -0,004 {EU} -0,027 E?E%
wisconsin | -0,003 (57)  -0,002 (55) 0,003 (43,5) 0,003 (43,5)

total 03,5 1121.5 1129 5 1'M01,5
average ranking 29313 "!ﬁ-,_'.l_'gﬂ "!T,_"}E:i T‘D‘E-HE
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Aligned Ranks Friedman’s measure: 18.837

(k—1)|32F  R2 — (kn®/4)(kn + 1)?

T — —
{[kn(kn + 1)(2kn + 1)]/6} — (1/k)> 1, R?

The p-value of Chi? with 3 degrees of freedom
1s 0.000296. Hypothesis rejected.

Eol

R? =703.5” + 11217 + 1129.5* + 1701.5% = 5,923,547

Jj=1

= |

~J)

R? =199 +207% + 198 + - + 199% = 926, 830
i=1
(4 1)[5,923,547 — (4.24%/4)(4 - 24 + 1)*]

I {[4-24(4-24+1)(2-4-24+1)]/6} —(1/4)-926,830

= 18.837
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Quade test: The Friedman test considers all data sets to be equal in terms of
importance. An alternative to this could take into account the fact that some data
sets are more difficult or the differences registered on the run of various
algorithms over them are larger. The rankings computed on each data set could be
scaled depending on the differences observed in the algorithms’performances.

The procedure starts finding the ranks in the same way as the Friedman test does.
The next step requires the original values of performance of the classifiers. Ranks
are assigned to the data sets themselves according to the size of the sample

range in each data set. The sample range within data set 1 is the difference
between the largest and the smallest observations within that data set:

Ay =nn+1)2n+1)(k)(k+1)(k—1)/72

Range in data set : i = max{x;} — min{x;}
j j 1 ¢
B==Y"S
n i
o k+1
S;‘j = Q; [l"; T The test statistic is

_(n—])B 118




Dataset

Sample
Ranking

Ranking
Qi
5

Quade

FDFC

NNEP

I5-CHC-1NN

FH-GBEML

adult

breast

bupsa

Ccar

cleveland
contraceptive
dermatolomy
ol

FETInAN
rlass
haberman
iris
lymphography
mushrooms
newthyroid
penbased
Ting
satimage
shuttle
spambase
thyroid
vichicle

wine
WisCOnsin

0,043
0,035
0,151
0,205
0,067
0,065
0,436
0,063
0,043
0,137
0,010
0,020
0,141
0,515
0,038
0,352
0,205
0,075
0,048
0,120
0,021
0,282
0,050
0,006

]
18
19

13
12

LI I~ Bl 01

0,752 (12)(32)
0,727 (-2,5)(10)
0,736 (-27)(18)
0,994 (-28.5)(19)
0,508 (19.5)(52)
0,535 (-6)(24)
0,967 (-34,5)(23)
0,831 -16,5)(11)
0,745 (-10,5)(7)
0,709 (-24)(16)
0,722 (3)(8)
0,067 (-4,5)(3)
0,832 (-25.5)(17)
0,008 (-36)(24)
0,963 (-6)(9)
0,082 (-33)(22)
0,078 (-30)(20)
0,854 (-21)(14)
0,065 (4,5)(27)
0,924 (-22.5)(15)
0,920 (2)(12)
0,837 (-31,5)(21)
0,972 (-15)(10)
0,958 (1,5)(4)

0,773 (4)(24)
0,748 (-7.5)(5)
716 (-9)(36)
0,861 (9,5)(57)
0,553 (-6,5)(26)
0,536 (-18)(12)
0,871 (11,5)(69)
0,807 (5,5)(33)
0,702 (10,5)(28)
0,572 (24)(64)
0,728 (-1)(4)
0,047 (4,5)(12)
0,752 (8,5)(51)
0,092 (-12)(48)
0,063 (-6)(9)
0,953 (-11)(44)
0,773 (30)(80)
0,787 (7){42)
0,984 (-4,5)(18)
0,887 (-7,5)(30)
0,042 (-6)(4)
0,643 (-10,5)(42)
0,056 (-5)(20)
0,050 (0,5)(3)

0,785 (-4)(16)
0,724 (2,5)(15)
0,585 (27)(72)
0,880 (-9,5)(38)

0,575 (-19,5)(13)
0,513 (6)(36)

0,954 (-11,5)(46)
0,819 (-5,5)(22)
0,719 (-3,5)(14)
0,669 (-8)({32)

0,725 (1)(6)
0,953 (1,5)(9)

0,802 (-8 5)(34)
0,482 (36) (D6)
0,954 (3)(18)
0,032 (11)(66)
0,834 (10)(60)
0,841 (-7){28)
0,905 (-13,5)(9)
0,861 (7,5)(45)
0,931 (-2)(8)
0,602 (10,5)(63)
0,944 (5)(30)
0,064 (-1)(1,5)

0,795 (-12)(8)
0,713 (7,5)(20)
0,638 (9)(54)
0,791 (28.3)(76)
0,515 (6,5)(39)
0,471 (18)(48)
0,532 (34,5)(92)
0,768 (16,5)(44)
0,705 (3,5)(21)
0,607 (8)(48)
0,732 (-3)(2)
0,060 (-1,5)(6)
0,691 (25,5)(68)
0,910 (12)(72)
0,026 (9)(24)
0,630 (33)(88)
0,849 (-10)(40)
0,779 (21)(56)
0,047 (13,5)(36)
0,804 (22 5)(60)
0,021 (6)(16)
0,554 (31,5)(84)
0,922 (15)(40)
0,064 (-1)(1,5)

suma of rankings

5

rankings medios
W,

mnt1],/2

T, =

-332

1,393

11

2,537

25

2. 502

203.5

3 ATE

=

Advanced Non-Parametric Tests and Case Studies
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Advanced Non-Parametric Tests and Case Studies

Quade measure: 21.967

With four algorithms and 24 data sets, Ts is distributed according to the F
distribution with 4-1=3 and (4-1)*(24-1)=69 degrees of freedom. The p-value
computed by using the F distribution 1s 0.000000000429, so the null hypothesis

1s rejected at a high level of significance.
As=nn+1)2n+ 1)(k)(k+1)(k—-1)/72

ok
B=—-%5,
1.
j=1
Ay = 24(24+1)(2- 24+ 1)4(4 - 1)(4 —1)/72 = 24,500

(n—1)B ]

Ty = B=—[(-332)° +11%+ 27.5* + 293.5%] = 4068.479
A — B 24

r__ 23-4068.479
> 24,500 — 4068.479

= 21.967
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Advanced Non-Parametric Tests and Case Studies

Contrast Estimation based on medians: Using the data resulting from the run
of various classifiers over multiple data sets in an experiment, the researcher
could be interested in the estimation of the difference between two classifiers’
performance.

A procedure for this purpose assumes that the expected differences between
performances of algorithms are the same across data sets. We assume that the
performance 1s reflected by the magnitudes of the differences between the
performances of the algorithms.

Consequently, we are interested in estimating the contrast between medians of
samples of results considering all pairwise comparisons. It obtains a quantitative
difference computed through medians between two algorithms over multiple data
sets, but the value obtained will change when using other data sets in t%1262
experiment.



Advanced Non-Parametric Tests and Case Studies

Contrast Estimation Based on Means procedure:

1. Compute the difference between every pair of k algorithms in each of the n data set:
D,y = X, — X, only when u <w.

i(uv) v?

2. Compute the median of each set of differences Z . It 1s the unadjusted estimator of
M, - M,. Sice Z,, = Z ., we have only to calculate the casesu<v.Z = 0.
3. Compute the mean of each set of unadjusted medians having the same first subscript

m,;:

4. The estimator of M, — M, ism, - m,
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Advanced Non-Parametric Tests and C

Dataset | i3y Dy Dypgy Dymay Dhyegy Dyag
adult* | -0021 -0033 -0,043 -0012 -0022 -0010
breast | -0,021 0,003 0.014 0,024 0,035 0,011

Contrast bupa | 0,020 0151 0000 0131 0078 -0,053

i ] car | 0,133 0114 0203 -0019 0071 0,080
Estimation cleveland | -0,045 -0,067 -0,007 -0021 0039 0.060
contraceptive | -0,001 0022 0064 0023 0065 0042

based dermatology | 0,006 0014 0436 -0083 0339 0422
ecoli | 0,024 0012 0063 -0012 0039 0051

on Medians german | 0043 0026 0040 -0017 -0003 0,014

glass | 0,137 0040 0,101 -0097 -0,036 0,062
haberman | -0,006 -0,003 -0,010 0,004 -0003 -0,007
iris | 0,020 0013 0007 -0007 -0013 -0.007
lymphography | 0,080 0,031 0,141 -0.049 0,061 0,110
mushrooms* | 0,006 0515 0087 0509 0,081 -0.428
newthyroid | 0,000 0010 0,038 0010 0038 0,028
penbased* | 0,020 0049 0352 0020 0323 0,302
ring® | 0,205 0,145 0,130 00681 0,076 0,015
satimage®* | 0,067 0,012 0,075 -0,054 0,008 0,062
shuttle* | -0.019 -0,030 0,018 -0011 0038 0,048
spambase® | 0,037 0063 0,120 0,026 0083 0,057
thyroid* | -0,013 -0,001 0,008 0011 0021 0,010
vehicle | 0,194 0235 0282 0041 0089 0,047

wine | 0.016 0028 0030 0011 0034 0,023 124
wisconsin | -0,001 -0,006 -0.006 -0,005 -0,005 0,000




Advanced Non-Parametric Tests and Case Studies

0+0.02+0018 + 0.064 Our estimate is m: — mo:
my = : + —— =0.026
4 0.023
m, — —0.02 +0+ (—4{],006) +0.038 0.003

Contrast Estimation based on medians among all the
algorithms of the case study presented

| PDFC NNEP | IS-CHC+INN | FH-GBML

PDFC 0.000 0.023 0.020 0.060

NNEP -0.023 0.000 -0.003 0.037
[S-CHC+INN -0.020 0.003 0.000 0.040
FH-GBML -0.060 -0.037 -0.040 0.000
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~— Post-hoc Procedures

Contrast Estimation based on Medians
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Advanced Non-Parametric Tests and Case Studies

Multiple Comparison tests are focused on the comparison between a control
method, which is usually the proposed method, and a set of algorithms used in the
empirical study. This set of comparisons is associated with a set or family of
hypotheses, all of which are related to the control method. Any of the post hoc tests
i1s suitable for application to nonparametric tests working over a family of

hypotheses. The test statistic for comparing the ith algorithm and jth algorithm
depends on the main nonparametric procedure used:

k(k + 1
* Friedman  Z = (R; — Rj)/ ( 6:: )

* Friedman Aligned Ranks 7z — (R; — ﬁj)/ k(n+1)

6

Quade z(rfrj)/\/kmn(znm(kn where Ty - W 1 _ W

]Sn(n + ]) n(n+1)/ n[rfi%};z
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-~ Post-hoc Procedures

REMEMBER: Three classical post-hoc procedures have been used in mutiple
comparisons tests:

* Bonferroni-Dunn: controls the family-wise error rate by dividing a by the
number of comparisons made (k—1).

* Holm: Step-down procedure that sequentially test the hypotheses ordered by
their significance. We will denote the ordered p values by p;, p,, ..., so that p, <p, <

. . < piy- It starts with the most significant p value. If p, 1s below o/(k—1), the
corresponding hypothesis 1s rejected and we are allowed to compare p, with a
/(k—2). If the second hypothesis is rejected, the test proceeds with the third, and so
on.

* Hochberg: step-up procedure that works in the opposite direction, comparing

the largest p value with a, the next largest with a /2 and so forth until it encounters a

hypothesis it can reject
129
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-~ Post-hoc Procedures

Hommel: is more complicated to compute and understand. First, we need to find
the largest J for which p,, ;. > ko/j forallk =1, ..., J. If no such J exists, we can
reject all hypotheses, otherwise we reject all for which p, <a/j.

Holland: it also adjusts the value of a in a step-down manner, as Holm’s method
does. It rejects H, to H, ; if i is the smallest integer so that p, > 1 — (1 — a))<- 1,
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-~ Post-hoc Procedures

Finner: it also adjusts the value of a in a step-down manner, as Holm’s or

Holland’s method do. It rejects H, to H, , if I is the smallest integer so that p, > 1 —
(1 —o)k-D/i

Rom: Rom developed a modification to Hochberg’s procedure to increase its
power. It works in exactly the same way as the Hochberg procedure, except that the
a values are computed through the expression

where o_, = o and oy_», = o/ 2.

131



Advanced Non-Parametric Tests and Case Studies

-~ Post-hoc Procedures

* Li - 2 steps rejection procedure:

* Step 1: Reject all H, if p,_; < a. Otherwise, accept the hypothesis associated to p,
and got to step 2.

* Step 2: Reject any remaining H; with p, <(1-p,_,)/(1-a)a
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-~ Post-hoc Procedures

A set of post-hoc procedures:

* one-step:
* Bonferroni-Dunn
* step-down:
* Holm
* Holland
* Finner
* step-up:
* Hochberg
* Hommel
* Rom
* two-step:
* Li

They are more powerful
according this direction

Source: S. Garcia, A. Fernandez, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple
comparisons in the design of experiments in computational intelligence and data mining:
Experimental Analysis of Power. Information Sciences 180 (2010) 2044-2064. 133
doi:10.1016/j.ins.2009.12.010.
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-~ Adjusted P-Values

In statistical hypothesis testing, the p-value is the probability of obtaining a
result at least as extreme as the one that was actually observed, assuming that
the null hypothesis is true.

The smallest level of significance that results in the rejection of

the null hypothesis, the p-value, is a useful and interesting
datum for many consumers of statistical analysis.

A p-value provides information about whether a statistical
hypothesis test is significant or not, and it also indicates
something about "how significant” the result is: The smaller the
p-value, the stronger the evidence against the null hypothesis.
Most important, it does this without committing to a particular
level of significance.
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-~ Adjusted P-Values

One way to solve this problem 1s to report adjusted p-values
(APVs) which take into account that multiple tests are
conducted.

An APV can be compared directly with any chosen significance
level a.

We recommend the use of APVs due to the fact that they
provide more information in a statistical analysis.
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-~ Adjusted P-Values

o Indexes i and j each correspond to a concrete comparison or hypothesis in the family of hypotheses, according to an

incremental order of their p-values. Index i always refers to the hypothesis in question whose APV is being computed
and index j refers to another hypothesis in the family.

o D, is the p-value obtained for the jth hypothesis.
o kis the number of classifiers being compared.

APV:s for each post-hoc procedure:

* one-step:
* Bonferroni-Dunn APV;: min{v;1}, where v = (k — 1)p;.
* step-down:
e Holm APVi: min{v; 1}, where v = max{(k —j)p; : 1 <j < i}.
e Holland APV min{z;1}, where »=max{1 (1 -p)*J:1<j<i}
e Finner APVi: min{z;1}, where v — max{1 — (1 pj-)”‘ REES <J <1}
* step-up:
 Hochberg APVi: max{(k —j)p; : (k—1) = j = i}
* Hommel (very difficult to compute, next slide)
e Rom APV - max{(ri)p;: (k—1) =j = i}
* two-step:

e L1 APVi:pi/(pi+ 1 =Dy 1) 137
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-~ Adjusted P-Values

1. Set APV; = p; for all i.
2. Foreach j=k-=1,k-=2,...,2 (1n that order)
3. Let B=0.
4. Foreachi,i>(k—1—))
5. Compute value c; = (j- p))/(J+i—k+1).
6. B=BUc;.
7. End for
8. Find the smallest ¢; value 1n B; call it ¢,,;,.
9. If APV; < ¢pin, then APV; = Cpin.
10. Foreachi,i < (k—=1-)
11. Let ¢; = min(cpmin, J - Pi)-
12. IfAPV1 < ¢y, then APV, = c;.
13. End for

Fig. 2. Algorithm for calculating APVs based on Hommel’s procedure.
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-~ Adjusted P-vValues
APVs in CEC’2005 Case Study

Table 10: p-values on functions f1-25 (G-CMA-ES is the control algorithm)

G-CMA-ES wvs. z unadjusted p Bonferroni-Dunn p Holm p Hochberg p
CoEVO 5.43662  5.43013- 10~° 5.43013- 10~ ° 5.43013 - 107  5.43013 - 10— °
BLX-MA 4.05081  5.10399- 10— ° 5.10399 . 10~ 4.59359 - 10~%  4.509359.10%
K-PCX 3.68837 2.25693- 104 0.002257 0.001806 0.001806

EDA 3.62441  2.80619- 104 0.0028961 0.002027 0.002027
SPC-PNX 3.28320 0.00103 0.0103 0.00618 0.00618
L-CMA-ES 3.07009 0.00214 0.0214 0.0107 0.0107

DE 2.47313 0.01339 0.1339 0.05356 0.05356
BLX-GL50 2.08947 0.03667 0.3667 0.11 0.00213
DMS-L-PSO 1.79089 0.07331 0.7331 0.14662 0.00213
L-SaDE 1.68429 0.00213 0.9213 0.14662 0.00213

In practice, Hochberg's method is more powerful than Holm's
one (but this difference is rather small), in this the results are
in favour of Hochberg’s method.
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-~ Adjusted P-vValues
APVs in GBMLs Case Study

Adjusted p- i Algorithm Unadjusted p PBonf PHolm PHoch
Values fOI' the Classification rate (XCS is the control)

comparison of ! Pitts-GIRLA 1.745 x 107® 6980 x 10°°  6.980 x 10°°  6.980 x 10°°
the control 2 CN2 0.01428 0.05711 0.04283 0.04283
) ] 3 GASSIST-ADI 0.02702 0.10810 0.05405 0.05405
algorithm in 4 HIDER 0.67571 1.00000 0.67571 0.67571
eaCh measure Cohen’s kappa (XCS is the control)
with the 1 Pitts-GIRLA 5576 x 10°© 2230 x 107> 2230 x 107> 2.230 x 1077
.. 2 CN2 0.01977 0.07908 0.05931 0.05931
remaining 3 GASSIST-ADI 0.13517 0.54067 0.27033 0.27033
algorithms 4 HIDER 0.76509 1.00000 0.76509 0.76509

 If the adjusted p for each method is lower than the desired level of confidence a
(0.05 in our case), the algorithms are worse from bottom to top (stress in bold
for 0.05)

« In practice, Hochberg's method is more powerful than Holm's one (but this
difference is rather small), in this our study the results are the same. 140
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-~ Adjusted P-Values

APVs in ANNs Case Study

Table 17
Adjusted p-values in 10FCV (C-SVM is the control).

i Algorithm Unadjusted p  pgonf PHolm PHoch

1 LVQ 1443-10> 8663-10> 8663-10> 8.663-10°
2  RBFN Decremental 12-104 7201-10% 6.001-10% 6.001-10°4
3  RBEN 0.00106 0.00638 0.00425 0.00425

4 MLP 0.00418 0.02509 0.01255 0.01255

5 NU-SVM 0.01119 0.06713 0.02238 0.02238

6 RBEN Inc. 0.04078 0.24466 0.04078 0.04078
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-~ Adjusted P-Values

APVs for all post-hoc procedures in

Friedman pPDFC is the control

i 1 2 3
Algorithm FH-GBML [S-CHC+ INN NNEP
Unadjusted p 5.69941 x 10> 0.05735 0.05735
Pgonf 1.70982 x 10°* 0.17204 0.17204
PHolmm 1.70982 x 10~* 0.11469 0.11469
PHoch 1.70982 x 10~* 0.05735 0.05735
Phomm 1.70982 x 10°* 0.05735 0.05735
PHoll 1.70973 x 10°% 0.11141 0.11141
Drom 1.70982 x 10~* 0.05735 0.05735
Drinn 1.70982 x 10~* 0.08477 0.08477
Dii 6.04577 x 10°* 0.05735 0.05735
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-~ Adjusted P-Values

APVs for all post-hoc procedures in
Friedman Aligned Ranks poFc is the control

i 1 2 3
Algorithm FH-GBML [S-CHC+ INN NNEP
Unadjusted p 2.32777 x 107 0.02729 0.03032
PBonf 6.98332 x 10~/ 0.08188 0.09097
PHolm 6.98332 x 107 0.05459 0.05459
DHoch 6.98332 x 1077 0.03032 0.03032
DHomm 6.98332 x 107/ 0.03032 0.03032
DHoll 6.98332 x 1077 0.05384 0.05384
DRom 6.98332 x 107/ 0.03032 0.03032
Drinn 6.98332 x 107 0.04066 0.04066
Dii 2.40057 x 1077 0.02738 0.03032
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-~ Adjusted P-Values

APVs for all post-hoc procedures in Quade
PDFC is the control

i 1 2 3
Algorithm  FH-GBML [S-CHC+ INN NNEP
Unadjusted p 6.43747 x 10* 0.02163 0.02843
Dgonf 1.93124 x 10~* 0.06490 0.08528
PHolm 1.93124 x 10 0.04326 0.04326
DHoch 1.93124 x 10°* 0.02843 0.02843
Priomm 1.93124 x 10 0.02843 0.02843
Dol 1.93112 x 10°* 0.04280 0.04280
Drom 1.93124 x 107* 0.02843 0.02843
Drinn 193124 x 10* 0.03227 0.03227
Dii 6.62538 x 10°* 0.02178 0.02843

144




Statistical Analysis of Experiments in Data Mining and

-~ Computational Intelligence

Advanced non-parametric tests and case studies

Detecting all pairwise differences in a multiple
comparison

145



Detecting all pairwise differences in a
multiple comparison:

Until now, we have studied the techniques for multiple
comparison using a control method. But, under some
circumstances, it would be interesting to conduct a test over
all possible comparisons involved in the experimental study

It is the usual case in review papers. In these cases, the
repetition of comparisons choosing different control
classifiers may lose the control of the family-wise error.

The post-hoc procedures need to control the FWER under more
restrictive corrections because the family of hypotheses is
formed now for k(k-1)/2 comparisons instead of (k-1).
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Remember (Friedman):

A set of pairwise comparisons can be associated with a set or
family of hypotheses. Any of the post-hoc tests which can be

applied to non-parametric tests work over a family of
hypotheses.

The test statistics for comparing the i-th and j-th classifier is
(Ki—R))
k(k+1)
EﬁF

The z value is used to find the corresponding probability (p-value)
from the table of normal distribution, which is then compared with an
appropriate level of significance a (Table Al in Sheskin, 2003)

o
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REMEMBER: Two classical post-hoc procedures have been used in mutiple

comparisons tests and also valid in n X n comparisons:

* Bonferroni-Dunn (Nemenyi in n X n comparisons): controls the

family-wise error rate by dividing a by the number of comparisons made m =
k(k—1)/2.

* Holm: Step-down procedure that sequentially test the hypotheses ordered by
their significance. We will denote the ordered p values by p;, p,, ..., so that p, <p, <

. . < p_;- It starts with the most significant p value. If p, 1s below o/(m—1), the
corresponding hypothesis 1s rejected and we are allowed to compare p, with a
/(m—2). If the second hypothesis is rejected, the test proceeds with the third, and so
on.

* Hochberg, Hommel, Rom, Finner are also valid....
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Logically Related Hypotheses:

The hypotheses being tested belonging to a family of all
pairwise comparisons are logically interrelated so that not all
combinations of true and false hypotheses are possible.

As a simple example of such a situation suppose that we want to
test the three hypotheses of pairwise equality associated with the
pairwise comparisons of three classifiers C;; i = 1,2,3. It is easily
seen from the relations among the hypotheses that if any one of
them is false, at least one other must be false. For example, if C, is
different than C,, then it is not possible that C, has the same
performance than C;and C, has the same performance than C,. C,4
must be different than C, or C, or both.
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Shaffer’s procedure: following Holm’s step down method, at stage j, instead
of rejecting H; if p; < a / (m-1+1), reject H; if p; < a / t, where t; 1s the maximum
number of hypotheses which can be true given that any (i - 1) hypotheses are false.

It 1s a static procedure, that 1s, t,, ..., t, are fully determined for the given
hypotheses H,, ..., H,, independent of the observed p-values. The possible numbers
of true hypotheses, and thus the values of t. can be obtained from the recursive
formula

S(k) = 0{@) tx:xe Sk— ),

where S(k) 1s the set of possible numbers of true hypotheses with k classifiers being
compared, k > 2, and S(0) = S(1) = {0}.
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Definition 1 An index set of hypotheses I C {1,...,m} is called exhaustive if exactly all H;, j € I,
could be true.

Bergmann-Hommel’s procedure: Reject all Hj with j not in A, where the
acceptance set

A= U{I: I exhaustive, min{F,: i< I} > a/|l]}

is the index set of null hypotheses which are retained.

For this procedure, one has to check for each subset I of {1,....m} if I is exhaustive,
which leads to intensive computation. Due to this fact, we will obtain a set, named
E, which will contain all the possible exhaustive sets of hypotheses for a certain
comparison. Once the E set is obtained, the hypotheses that do not belong to the A
set are rejected.
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Function obtainExhaustive(C = {¢y, ¢, ..., ¢ }: list of classifiers)

1. Let E=10
2. E = E U {set of all possible and distinct pairwise comparisons using C}
3. If E==
4. Return E
5. End if
6. For all possible divisions of C into two subsets C; and G, ¢, € Gz and C; # 0
7. E} = obtainExhaustive( ()
8. E» = obtainExhaustive(Cy)
9. F=FEUE
10. E=EUE,
11. For each family of hypotheses e; of E;
12. For each family of hypotheses ey of Ej
13. E=EU (e Uep)
14. End for
15. End for
16. End for
17. Return £

Figure 1. Algorithm for obtaining all exhaustive sets
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Advanced Non-Parametric Tests and Case Studies

Case Study used:

30 data sets from UCI and KEEL data-set
Classifiers (from KEEL, standard parameters values):
C4.5
1NN
Naive Bayes
Kernel
CN2
Rankings computed by Friedman test
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C4.5 INN  NaiveB Kernel CN2

Average Rank 2.100 3.250 2.200 4.333 3.117
i hypothesis z=(Ry—R;)/SE P oLV LM olspy
1 C4.5 vs. Kernel 5.471 4.487-10=° 0.005 0.005 0.005
2 NaiveBayes vs. Kernel 5.226 1.736-10=7 0.005 0.0055 0.0083
3 Kernel vs. CN2 2.98 0.0029 0.005 0.0063 0.0083
. C4.5 vs. INN 2.817 0.0048 0.005 0.0071 0.0083
5 INN vs. Kernel 2.654 0.008 0.005 _0.0083 0.0083
6  INN vs. NaiveBayes 2.572 0.0101 0.005 0.0 0.0125
7 C4.5 vs. CN2 2.49 0.0128 0.005 0.0125~ 0.0125
8  NaiveBayes vs. CN2 2.245 0.0247 0.005 0.0167 0.0167
9 INN vs. CN2 0.327 0.744 0.005 0.025  0.025
10 C4.5 vs. NaiveBayes 0.245 0.8065 0.005  0.05 0.05

Table 3: Family of hypotheses ordered by p-value and adjusting of oo by Nemenyi (NM), Holm
(HM) and Shaffer (SH) procedures, considering an initial oo = 0.05
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Sizel Size 2 Size 3 Size 4 Size > 6

(12)  (12,34) (12,13,23) (12,13,23,45) (12,13,14,15,23,24,25,34,35,45)
(13) (13,24) (12,14,24) (12,14,24,35) (12,13,14,23,24,34)
(23)  (14,23) (13,14,34) (12,34,35,45) (12,13,15,23,25,35)
(14)  (12,35) (23.24,34) (13,14,25,34) (12,14,15,24,25,45)
24)  (13,25) (12,15,25) (13,15,24,35) (13,14,15,34,35,45)
(34)  (15,23) (13,15,35) (13,24,25,45) (23,24,25,34,35,45)
(15)  (12,45) (23,25,35) (14,15,23,45)
(25)  (13,45) (14,15,45) (14,23,25,35)
(35)  (23,45) (24,25,45) (15,23,24,34)
(45)  (14,25) (34,35,45)

(15,24)

(14,35)

(24,35)

Exhaustive sets obtained for the case study. Those belonging to the Acceptance set (A) are
typed in bold.
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Advanced Non-Parametric Tests and Case Studies

Case Study used:

Nemeny1’s test rejects the hypotheses [1-4] since the
corresponding p-values are smaller than the adjusted o’s.

Holm’s procedure rejects the hypotheses [1-3].
Shaffer’s static procedure rejects the hypotheses [1-6].

Bergmann-Hommel’s dynamic procedure first obtains the
exhaustive index set of hypotheses. It obtains 51 index sets.
We can see them 1n the previous slide. From the index sets, it
computes the A set. It rejects all hypotheses H; with j not in A,
so 1t rejects the hypotheses [1-8].
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e m is the number of possible comparisons in an all pairwise comparisons design; that is, m =
ke(k—1)

2 .

e ¢;is the maximum number of hypotheses which can be true given that any (j— 1) hypotheses
are false

APVs for each post-hoc procedure:

* one-step:
* Nemenyi APV;: min{v;1}, where v=m- p;.

* step-down:
e Holm APV;: min{v; 1}, where v=max{(m— j+1)p;:1 < j<i}.
* Shaffer APV min{v;1}, where v=max{t;p; . 1 < j < i}.

* Bergmann-Hommel

APV min{v; 1}, where v=max{ |I|-min{ p;, j < I} : I exhaustive,i< [},
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i llprthesiS Pi APV APV APVsy APVpy

1 C4.5 vs .Kernel 4487-107%  4.487-1077 4.487-1077 4.487-1077 4.487-107"
2 NaiveBayes vs Kernel ~ 1.736-107  1.736-107°% 1.563-107% 1.042-107% 1.042-1075
3 Kernel vs .CN2 0.0029 0.0288 0.023 0.0173 0.0115

4 C4.5 vs .INN 0.0048 0.0485 0.0339 0.0291 0.0291

5 INN vs .Kernel 0.008 0.0796 0.0478 0.0478 0.0319

6 1NN vs .NaiveBayes 0.0101 0.1011 0.0506 0.0478 0.0319

7 C4.5 vs .CN2 0.0128 0.1276 0.0511 0.0511 0.0383

8  NaiveBayes vs .CN2 0.0247 0.2474 0.0742 0.0742 0.0383

9 INN vs .CN2 0.744 1.0 1.0 1.0 1.0

10 C4.5 vs .NaiveBayes 0.8065 1.0 1.0 1.0 1.0

APV:s obtained in the example by Nemenyi (NM), Holm (HM), Shaffer’s static (SH)

Bergmann-Hommel's dynamic (BH)
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Lessons Learned

Considerations on the use of non-parametric tests
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Lessons Learned

On the use of non-parametric tests:

The need of using non-parametric tests given that the
necessary conditions for using parametric tests are not

verified.
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Lessons Learned

Wilcoxon’s test

d Wilcoxon’s test computes a ranking based on differences
between functions independently, whereas Friedman and derivative
procedures compute the ranking between algorithms.

d Wilcoxon’s test is highly influenced by the number of case of
study (functions, data sets ...). The N value determines the critical
values to search 1n the statistical table.

It 1s highly influenced by outliers when N 1s below or equal to 11.
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Lessons Learned

Multiple comparison (1)

d A multiple comparison must be carried out first by using a
statistical method for testing the differences among the related
samples means. Then to use a post-hoc statistical procedures.

d Holm’s procedure is a very good test.

Hochberg’s method can rejects more hypothesis than Holm’s one.
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Lessons Learned

Multiple comparison (2)

(J An appropriate number of algorithms in contrast with an
appropriate number of case problems are needed to be used in order
to employ each type of test. The number of algorithms used in
multiple comparisons procedures must be lower than the number of
case problems

1 Both, the Friedman Aligned Rank test and the Quade test, can be
used under the same circumstances as the Friedman test. The
differences in power between them are unknown, but we encourage
the use of these tests when the number of algorithms to be
compared 1s low.
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Lessons Learned

What happens if I use a nonparametric test when the data
is normal?

m It will work, but a parametric test would be more
powerful, i.e., give a lower p value.

m If the data is not normal, then the nonparametric
test is usually more powerful

m Always look at the data first, then decide
what test to use.
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Lessons Learned

Advantages of Nonparametric Tests

m Can treat data which are inherently in ranks as

well as data whose seemingly numerical scores
have the strength in ranks

m Easier to learn and apply than parametric tests
(only one run for all cases of test)

If sample sizes as small as N=6 are used, there 1s no alternative
to using a nonparametric test
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Lessons Learned

Advantages of Nonparametric Tests

If we have a set of data sets/benchmark functions, we
must apply a parametric test for each data set/benchmark
function.

We only need to use a non-parametric test for comparing
the algorithms on the whole set of benchmarks.
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Lessons Learned

Design of Experiments in
Data Mining/Computational Intelligence

They are not the objective of our talk, but they are two
additional important questions:

] Benchmark functions/data sets ... are very important.

] To compare with the state of the art is a necessity.
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Wilcoxon’s test

d An appropriate number of algorithms in contrast with an
appropriate number of case problems are needed to be used in order
to employ each type of test. The number of algorithms used in
multiple comparisons procedures must be lower than the number of
case problems. The previous statement may not be true In
Wilcoxon’s test. The influence of the number of case problems
used 1s more noticeable 1n multiple comparisons procedures than in
Wilcoxon'’s test.
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Multiple comparison with a control (1)

1 Holm’s procedure can always be considered better than
Bonferroni-Dunn’s one, because it appropriately controls the
FWER and 1t 1s more powerful than the Bonferroni-Dunn’s. We
strongly recommend the use of Holm’s method in a rigorous
comparison.

1 Hochberg’s procedure is more powerful than Holm’s. The
differences reported between it and Holm’s procedure are in
practice rather small. We recommend the use of this test together
with Holm’s method

[y
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Multiple comparison with a control (2)

1 Holm, Hochberg, Finner and Li are the more recommended
post-hoc test to be used due to their trade-off between simplicity
and power.

 The power of the Li test is highly influenced by the first p-value
of the family and when it 1s lower than 0.5, the test will perform
very well.

 The choice of any of the statistical procedures for conducting an
experimental analysis should be justified by the researcher. The use
of the most powerful procedures does not imply that the results
obtained by his/her proposal will be better
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Multiple comparison with a control (3)

(J An alternative to directly performing a comparison between a control
algorithm and a set of algorithms 1s the Multiple Sign-test. We recommend its
use when the differences reported by the control algorithm with respect to the
rest of methods are very clear.

1 The Contrast Estimation in nonparametric statistics is used for computing the
real differences between two algorithms, considering the median measure the
most important.

[ Finally, we want to remark that the choice of any of the statistical procedures
presented 1in this talk for conducting an experimental analysis should be justified
by the researcher. The use of the most powerful procedures does not
imply that the results obtained by his/her proposal will be better.
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All pairwise comparisons in multiple comparison

(J We do not recommend the use of Nemenyi’s test, because it is a
very conservative procedure and many of the obvious differences
may not be detected.

 Conducting the Shaffer static procedure means a not very
significant increase of the difficulty with respect to the Holm
procedure.

J Bergmann-Hommel’s procedure is the best performing one, but
it 1s also the most difficult to understand and computationally
expensive. We recommend its usage when the situation requires so.
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Lessons Learned

~—— FrequentQuestions

J Can we analyze any performance measure?

] With non-parametric statistic, any unitary performance measure
(associated to an only algorithm) with a pre-defined range of output
can be analyzed. This range could be unlimited, allowing us to
analyze time resources as example.
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Lessons Learned

~—— FrequentQuestions

1 Can we compare deterministic algorithms with stochastic ones?

] They allow us to compare both types of algorithms because they
can be applied in multi-domain comparisons, where the sample of
results 1s composed by a result that relates an algorithm and a

domain of aplication (problem, function, data-set, ...)
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Lessons Learned

~—— FrequentQuestions

1 How the average results should be obtained from each
algorithm?

J This question does not concern to the use of non-parametric
statistics, due to the fact that these tests require a result for each
pair algorithm-domain. The obtaining of such result must be
according to a standard procedure followed by all the algorithms in
the comparison, such the case of validation techniques. Average
results from various runs (at least 3) must be used for stochastic
algorithms.
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Lessons Learned

~—— FrequentQuestions

J What is the relationship between the number of algorithms and
datasets/problems to do a correct statistical analysis?

J In multiple comparisons, the number of problems (data-sets)
must be greater than the double of algorithms. With lesser data-sets,
it 1s highly probable to not reject any null hyphotesis.
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Lessons Learned

~—— FrequentQuestions

O Is there a maximum number of datasets/problems to be used?

] There not exists a theoretical threshold, although if the number
of problems is very high in relation with the number of algorithms,
the results trend to be inaccurate by the central limit theorem. For
pairwise comparisons, such Wilcoxon’s, a maximum of 30
problems is suggested. In multiple comparisons with a control, we
should indicate as a rule of thumb that n > 8-k could be excessive
and results 1n no significant comparisons.
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Lessons Learned

~—— FrequentQuestions

 The Wilcoxon test applied several times works better than a
multiple comparison test such as Holm, Is it correct to be used in
these cases?

(J The Wilcoxon test can be applied according a multiple
comparison scheme, but the results obtained cannot be considered
into a family which control the FWER. Each time a new
comparison 1s conducted, the level of significance established a
priori can be overcome. For this reason, the multiple comparison
tests exist.
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Lessons Learned

~—— FrequentQuestions

(J Can we use only the rankings obtained to justify the results?

] With the rankings values obtained by Friedman and derivatives
we can establish a clear order 1n the algorithms and even to
measure the differences among them. However, it cannot be
concluded that one proposal is better than other until the hypothesis
of comparison associated to them i1s rejected.
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Lessons Learned

~—— FrequentQuestions

U Is it necessary to check the rejection of the null hypothesis of
Friedman and derivatives before conducting a post-hoc analysis?

] It should be done, although by definition, it can be computed
independently.
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Lessons Learned

~—— FrequentQuestions

d When the Friedman Aligned and Quade tests are recommendable
instead of classical Friedman?

[ The difference of power among the three methods are small and
very dependent of the sample of results to be analyzed. Theoretical
studies demonstrate that the Aligned Friedman and the Quade tests
have better performance when we compare not more than 4
algorithms. The Quade test also assumes some risk because it
considers that the more relevant problems are also those which
present higher differences in performance among the methods, and
it 1s not always true.
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Lessons Learned

~—— FrequentQuestions

(J Which post-hoc procedures should be used?

(J We consider that the Holm test must appear in a comparison,
wheres Bonferroni does not. Hochberg and Li tests could act as a
complement when their use allow us to reject more hypotheses
than Holm’s. All rejected hyphotesis by any procedure 1s correctly
rejected because all procedures perform a strong control of the
FWER. However, some tests, such as Li, are influenciated by the
unadjusted p-values of the initial hypotheses and when the are
lesser than 0.5, 1s the only case in which the test achieves its best
performance of power.
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Software

Software for conducting multiple comparisons tests with a control

gl  http:/sci2s.ugr.es/sicidm/controlTest.zip

- flurare

Read data of results of k algorithms over N case problems in CSV format. The data can
correspond to accuracy, AUC or any other performance measure.

Compute the rankings through the Friedman Aligned Ranks and Quade procedures of k
algorithms over N case problems.

Compute the Friedman and Iman-Davenport, Friedman Aligned-Ranks and Quade Statistics

onding to the innut data

onding to the input data.

Show the tables with the set of hypotheses, unadjusted p-values for each comparison and
adjusted level of significance for Bonferroni-Dunn, Holm and Hochberg, Hommel, Holland,
Rom, Finner and Li procedures: 1 x n comparison.

Show the table with adjusted p-values for the procedures 1 x n mentioned in the previous item.

Give a report detailing the rejected hypotheses considering the levels of significance a = 0.05
and o = 0.10. 194




Software

Software for conducting all pairwise comparisons

http://sci2s.ugr.es/sicidm/multipleTest.zip s

o flunare

We offer a software developed in JAVA which calculates all the

multiple comparisons procedures described in this talk and the JMLR
paper.

It allows as input files in CSV format and obtains as output a LaTeX
file with tabulated information about Friedman, Iman-Davenpor.
Bonferroni-Dunn, Holm, Hochberg, Shaffer and Bergamnn-Hommel
tests. It also computes and shows the adjusted p-values.
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How must I conduct statistical comparisons in my Experimental
Study? On the use of Nonparametric Tests and Case Studies.
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